
Radboud University Nijmegen

Faculty of Science

Scaling Online Planning for
MPOMDPs with Many Agents

New Algorithm Variants and Addressing Scaling Issues

Thesis MSc Computing Science
Data Science Specialisation

Author:
Maris F.L. Galesloot BSc

Supervisor:
Dr. Nils Jansen

Second reader:
Dr. Tal Kachman

Second supervisors:
Dr. Sebastian Junges Dr. Thiago D. Simão

August 12, 2024

Acknowledgements

First and foremost, I would like to thank Nils, Sebastian, and Thiago for the fruitful
discussions throughout the process of this thesis. I am sincerely thankful for the the time
you invested in our meetings, and the opportunity of being actively involved in the re-
search group. I thoroughly enjoyed the inspirational working environment. Additionally,
I would like to thank Nils for his daily supervision and guidance during the last months of
my master’s degree. I would also like to thank the ELLIS Unit Nijmegen for supporting
this research as part of the ELLIS Excellence Fellowship, and Tal Kachman for being the
second reader of this thesis. Finally, I would like to thank my parents, my girlfriend, my
sisters, and their (new) families for their guidance along this journey, and their countless
attempts at making sense of what I was doing, consequently putting the matter of this
thesis into interesting perspectives. More importantly, I would like to thank them for
their unconditional support.

Abstract

Online planning in single-agent partially observable environments scales to realistic en-
vironments with billions of states. However, in centralised multi-agent systems, often
modelled as multi-agent partially observable Markov decision processes (MPOMDPs),
the action and observation spaces grow exponentially with the number of agents. In
these models, conventional online planning is largely intractable. Prior work partially
mitigates this issue by capturing the inherent structure of multi-agent settings in graphs.
These graphs exploit the occurrence of interactions between subsets of agents and thereby
approximate the value function by a mixture of local estimates. We propose the following
additions: First, we bring the locality of interactions to an online planning algorithm for
MPOMDPs operating on a so-called sparse particle filter belief tree. Next, we further ex-
ploit the graph and propose general improvements to online planners in MPOMDPs with
(1) a scalable approximation of the belief and (2) a scalable extension to the graphical
action selection algorithms. Our algorithms show competitive performance for settings
with only a few agents and outperform the state-of-the-art on benchmarks with many
agents.

Contents

1 Introduction 3

2 Preliminaries 6
2.1 Decision Making Under Uncertainty . 6

2.1.1 Single-Agent Sequential Decision Making 7
2.1.2 Partial Observability . 9

2.2 Multi-Agent Systems . 12
2.2.1 Cooperation . 12
2.2.2 Centralised Agents . 12
2.2.3 Decentralised Agents . 14
2.2.4 Complexity Classes . 14

3 Simulators & Tree Search 15
3.1 Monte Carlo Tree Search . 16

3.1.1 Bandit Algorithms in Monte Carlo Planning 16
3.1.2 Partial Observability . 18

3.2 Particle filters . 20
3.2.1 Unweighted . 20
3.2.2 Weighted . 21
3.2.3 Sequential Monte Carlo . 21
3.2.4 Particle Filtering . 25

4 Tree Search for Many-Agent POMDPs 27
4.1 Coordination Graphs . 27
4.2 Factored-Value POMCP . 29

4.2.1 Factored Statistics . 29
4.2.2 Factored Trees . 30

4.3 Particle Belief-Space Planning for MPOMDPs 33
4.3.1 Particle-Belief MMDP . 33
4.3.2 Coordination Graph Particle Filter Tree 36

5 Scalable Particle Filtering 38
5.1 Factored Particle Filtering . 38

5.1.1 Factored Filtering . 39
5.1.2 Drawbacks . 40

5.2 Locality-based filtering . 41
5.2.1 Multiple Estimators . 42
5.2.2 Limitations . 43

1

6 Action Selection 45
6.1 Algorithms . 45

6.1.1 Exact Algorithm . 45
6.1.2 Anytime Algorithm . 47
6.1.3 Eliminating Cycles . 47

6.2 Comparison . 49
6.2.1 Computational Complexity . 49
6.2.2 Exploration . 49

7 Experimental Evaluation 51
7.1 Benchmark descriptions . 51

7.1.1 Firefighting in a Line . 51
7.1.2 System Administration . 51
7.1.3 Rocksampling . 52
7.1.4 Capturing a Target . 53

7.2 Set-up . 53
7.3 Results . 56

7.3.1 Overview . 56
7.3.2 Analysis . 57
7.3.3 Additional experiments . 64

8 Contributions, Related Work & Discussion 67
8.1 Related Work . 67
8.2 Discussion . 69

9 Future Work & Conclusion 71
9.1 Future Work . 71
9.2 Conclusion . 73

10 Experimental Evaluation 84
10.1 Full Results . 84

10.1.1 Firefighting . 84
10.1.2 CaptureTarget . 85
10.1.3 MARS . 86

2

Chapter 1

Introduction

Sequential decision-making under uncertainty is a field of study concerning decision-
making over time in stochastic environments. These stochastic scenarios encompass a
wide variety of systems where the transitions of these systems are influenced by random
chance, such as nature itself. Often, the system is assigned a goal, which is formulated
either by introducing costs or rewards. In the latter case, the aim is to maximise the
accumulated rewards given some time span. The evolution of a stochastic system can be
modelled by so-called Markov chains, which are probabilistic transition systems. As we
consider decision-making in stochastic environments, non-determinism is added to these
systems as actions. The actions then decide which transition probabilities are incurred
on the system. These models are called Markov decision processes (MDPs, Puterman
(1994)). It is often considered unrealistic to assume that a decision-making agent has
complete access to the full state. The state might then be considered partially observ-
able, where the agent receives observations instead of the true state of the system. This
enables these so-called partially observable Markov decision processes (POMDPs) to more
accurately reflect the partial knowledge of the agent in the environment it is operating in.

POMDPs (Kaelbling et al., 1998) are able to model many problems, such as airborne
collision avoidance (Kochenderfer et al., 2015), conservation biology (Memarzadeh and
Boettiger, 2018), automated driving (Ulbrich and Maurer, 2013), and robust maintenance
planning in railway systems (Arcieri et al., 2022). However, this model is intractable in
general (Madani et al., 2003). Online planning is a practical approach to tackle POMDPs
under limited computational and time budgets (Silver and Veness, 2010), focusing the
available resources on the reachable parts of the problem and on the most promising parts
of the solution space (Kocsis and Szepesvári, 2006). This has brought online planning
to multiple applications, such as the defence of cyber-networks (Miehling et al., 2018),
autonomous driving (Sunberg et al., 2017), and, UAV navigation (Sandino et al., 2020).

Sequential decision-making problems with multiple agents under partial observabil-
ity (Messias et al., 2011), such as teams of mobile robots or autonomous surveillance
systems, can be modelled by multi-agent partially observable Markov decision processes
(MPOMDPs). A particular challenge that makes solving MPOMDPs even harder than
POMDPs is the combinatorial number of actions and local observations that grow expo-
nentially with the number of agents (Pynadath and Tambe, 2002). Namely, in centralised
multi-agent systems, to act optimally, one must consider the observations and actions of
all agents. This increased complexity makes a naive application of online planning algo-

3

rithms ineffective as the reachable solution space increases drastically.
To mitigate this issue, we can exploit the locality of agent interactions, often captured

by so-called coordination graphs (Guestrin et al., 2002a). Considering a graphical struc-
ture can increase the tractability of finding solutions by considering sub-spaces of the
problem (Kuyer et al., 2008; Castellini et al., 2021). In particular, Amato and Oliehoek
(2015) estimate the value for the actions of pairs of agents instead of the value of the
actions of all the agents. By themselves, these methods do not alleviate the difficulty
of estimating the underlying state of the MPOMDP when many agents are involved.
The state space of an MPOMDP typically grows very large when numerous agents are
involved. Furthermore, it needs to be inferred from the observations that are returned by
the environment. In an MPOMDP, this set of possible observations grows increasingly
large with the number of agents involved. Additionally, determining which action to
execute is complicated by the combination of local sub-problems that must be reasoned
over.

Therefore, to fully scale existing planning methods, we must ensure that we
(1) scale the state estimation procedures, and,

(2) decrease the computational complexity of selecting actions in a coordination graph.
We identify these problems as two requirements for scaling up. In this thesis, we aim
to develop solutions to these two issues by exploiting the given structure as much as
possible.

Contributions. This thesis provides an algorithmic framework for online planning that
overcomes scaling issues caused by encompassing many agents. Our work can be identified
as two distinct contributions.

• First, we introduce new algorithm variants. We start by casting the MPOMDP
to an approximation where the underlying state is fully observable. Then, we
introduce two variants of the so-called sparse particle filter tree (PFT, Lim et al.
(2020)) algorithm that exploit graphical structure in a similar fashion to Amato
and Oliehoek (2015), namely FS-PFT and FT-PFT (Sect. 4.3.2). These algorithms
operate on the possible set of beliefs of the agents, which makes the branching
factor insensitive to the number of possible observations. Additionally, we improve
on an existing algorithm by gradually increasing the allowed search space, namely
FS-POMCPOW (Sect. 4.2.1).

• Second, we address the scaling problems by the following two sub-contributions:

1. For the first scaling problem (chapter 5), we consider two solutions: (a) We
adopt the work of Ng et al. (2002) for factored Bayesian networks to the
setting of MPOMDPs (Sect. 5.1). (b) We consider a graphical structure for
the MPOMDP and propose to maintain a set of approximate state estimators
based on the local observations received by the agents (Sect. 5.2).

2. For the second (chapter 6), we provide an extension to existing procedures
for selecting actions to improve their scalability. Existing methods fail to find
the best actions within a reasonable time when the graph is large and dense.
Our method specifically aims at settings with dense coordination structures
and many agents by extracting a spanning tree from the coordination graph
(Sect. 6.1.3).

4

Our empirical evaluation shows that the various contributions improve the state-of-the-
art, particularly on problems with many agents. For example, on two well-known bench-
marks, we can scale up to 64 instead of 10 and 6 instead of 2 agents, respectively. Fur-
thermore, we show that exploiting local interactions between agents can also work in
arbitrary MPOMDP environments that do not necessarily contain a desired structure,
making our methods applicable to general MPOMDPs.

Outline. Chapter 2 introduces the formal concepts that encompass the context of this
thesis. Chapter 3 introduces the notion of online planning and empirical state estima-
tion. In Chapter 4, we (1) formalise coordination graphs, (2) describe existing methods
by Amato and Oliehoek (2015), and (3) introduce new algorithm variants (FS-PFT and
FT-PFT) of the particle filter tree that can handle the combinatorial explosion of the
problem space. Chapter 5 contains methods to combat the difficulty of state estima-
tion in high-dimensional settings. In chapter 6, we give two methods to select actions
in the algorithms introduced in chapter 4 and introduce an extension based on a maxi-
mum spanning tree that scales these methods to problems with many agents. Chapter 7
contains an elaborate description of our benchmark set-up (Sect. 7.1 and 7.2) and the
analysis of our experimental evaluation (Sect. 7.3). In chapter 8, we discuss the relevance
of this thesis in the scientific context of the related work, particularly in the field of online
planning and MPOMDPs. Chapter 9 introduces possible avenues of new research and
subsequently concludes this work.

5

Chapter 2

Preliminaries

In this chapter, we describe and define the required theoretic concepts that will be used
in the later chapters of this thesis. Below we briefly introduce the notation that is used
throughout this thesis.

Sets and sequences. For a finite set X , we denote the number of elements, i.e., car-
dinality of X as |X |. The empty set is ∅. The set of integers and reals are denoted as Z
and R, respectively. We assume the set of natural numbers N consists of the non-negative
integers 1, 2, The power-set P(X) of a set X is the union of all possible subsets of X ,
including X itself and the empty set ∅. A sequence (x0, x1, . . . , xt) is an ordered collection
of elements, where x ≺ y indicates that x precedes y, i.e., x0 ≺ x1 ≺ . . . ≺ xt. We often
compress a sequence into a subscript, writing x0:t = (x0, x1, . . . , xt).

Probabilities. A discrete probability distribution over a finite set X is a function
p : X → [0, 1]. A proper probability distribution satisfies the condition ∑

x∈X p(x) = 1.
The simplex, i.e., set of probability distributions over X , is denoted as ∆(X). We write
the expectation of a random variable X under variable y as Ey[X]. The Dirac delta
distribution δ is a distribution with its mass centred around a single point. Its value
is zero everywhere except said point, and its integration satisfies

∫ −∞
∞ δ(x)dx = 1. The

Kronecker delta function δij maps two integers i, j to one if and only if they are equal,
and zero otherwise:

δij =
1, if i = j

0, otherwise
(2.1)

Vectors. We denote a vector of elements as x⃗ = ⟨x0, x1, . . . , x|x⃗|⟩, where |x⃗| is the
number of elements of the vector. To retrieve an individual element xi, we index the
vector as in x⃗i = xi, with consequently, xi ∈ x⃗.

2.1 Decision Making Under Uncertainty
Automated decision-making is a subject of study that is considered by many researchers.
In order to do so, a set of formal frameworks have been defined that allow us to model
the concept of decision-making over time. When we write time, we often imply the
abstraction of real-time to discrete intervals or time steps. Commonly, we denote time
with the letter t ∈ N. Then, the order of the running process or system is defined by

6

a discrete-time clock t = 1, 2, Although we do not study continuous-time models in
this thesis, extensions to model real-time systems exist (Bradtke and Duff, 1994; Qiu and
Pedram, 1999).

2.1.1 Single-Agent Sequential Decision Making
We start with a standard model for sequential decision-making with a single agent. Even
though this model is the simplest form of reasoning about decision-making, its capabilities
for modelling decision-making is large enough to cover a wide range of problems in which
the state can be fully observed (Puterman, 1994).

Definition 1 (MDP). The Markov decision process (MDP) is defined by the tuple
M = ⟨S, b0,A, T , r, γ⟩, with:

• S, a finite set of states with initial state distribution b0,

• A, a finite set of actions,

• T , transition probability function defined as T : S × A → ∆(S) specifying the
probability of transitioning to new state s′ ∈ S given the previous state s ∈ S and
action a ∈ A,

• r, reward function r : S × A → R specifying the immediate reward given the state
s and action a, and,

• γ, the discount factor balancing the effect of short and long-term rewards.

States and transitions. In order to model the dynamics of a system or environment,
we need a definition of a state. A state st at time t from the set of states st ∈ S entails
everything that forms the essence of a system at some perceived moment in time. As
time passes, the dynamics influence the state of the model. These transitions can be
subject to stochastic influences, such as nature itself. To reason about decision-making
in environments with aleatoric uncertainty, we define that the state transitions of the
model are subject to probability distributions (Badings et al., 2023). In MDPs, which are
transition models with non-determinism in the form of actions, the transition probabilities
are dependent on the resolving actions.

Markov property. Markov models describe how the state of a stochastic system
evolves over time. One of the key principles of these models is the Markov property.
A system is Markovian if it is defined from the current state in time and does not depend
on the history of the system. Intuitively, the current state is a sufficient representation of
the system at that perceived moment in time. An MDP is Markovian if the probability
distribution of a next state st+1 satisfies Pr(st+1 | st, at, st−1, at−1, . . .) = Pr(st+1 | st, at) =
T (st+1 | st, at). The Markov property is useful because it implies that the current state
st entails enough information to pick an optimal action at, as the transition probability
remains equivalent regardless of the history of the system (Wiering and Van Otterlo,
2012).

7

Accumulating rewards. In an MDP, we aim to maximise the accumulated rewards
as given by the reward function r over time. More formally, we aim to maximise the
cumulative discounted reward from time t onwards, commonly denoted as the return Rt:

Rt =
H∑
t

γtrt, (2.2)

where γ ∈ (0, 1] is the discount factor that gives greater weight to short-term rewards,
rt the reward at time t given by the state and action at time t, and H is the planning
horizon (Sutton and Barto, 1998). Typically, we evaluate algorithms with the return
R = ∑H

t=0 γtrt achieved, starting at time t = 0. We distinguish two types of tasks based
on the planning horizon and discount factor. For finite horizon optimisation tasks, we
have a planning horizon H ∈ N and a discount factor of γ = 1 for undiscounted and
γ ∈ (0, 1) for discounted problems, respectively. For infinite horizon tasks, the planning
horizon H =∞ is infinite. In this case, discounting γ ∈ (0, 1) is employed to ensure that
optimising the return remains tractable, i.e., does not reach infinity.

Policies and values. We maximise the return by finding an optimal mapping from
states to actions. We call this mapping a policy π(a | s) and indicate the policy that
maximises the value, the optimal policy by π∗(a | s). A deterministic policy is a function
π : S → A that outputs an action given an input state. Conversely, a stochastic policy is
a function π : S → ∆(A) that gives a distribution over the action space given an input
state. The value function V : S → R indicates quality of a state in the MDP in term of
expected return. The value V π of a state s ∈ S under a policy π is the expected return
under policy π:

V π(s) = Eπ [Rt | s] = Eπ

[
H∑
t

γtr(st, π(st) | st = s

]
. (2.3)

Additionally, the action-value function Q(s, a) or Q-function Q : S × A → R of a state-
action pair is the value, i.e., expected return, of state s ∈ S under policy π given that
the action a ∈ A is taken: Qπ(s, a) = E [V π(s′) | s′ ∼ T (s, a)], by sampling a transition
from the transition probability function. More formally:

Qπ(s, a) = Eπ

[
H∑
t

γtr(st, at) | st = s, at = a, at+1 = π(st+1)
]

. (2.4)

The relation between Q and V is bidirectional, and we can find V from Q by V (s) =
maxa Q(s, a). The optimal value V ∗ of the optimal policy π∗ satisfies the Bellman opti-
mality equation:

V ∗ = BV ∗, (2.5)
where B is the Bellman backup operator as given by:

BV ∗(s) = max
a∈A

 ∑
s′∈S
T (s′ | s, a) (r(s, a) + γV ∗(s′))

 , (2.6)

Subsequently, the optimal policy π∗ can be recovered from the optimal value func-
tion as:

8

π∗(s) = arg max
a

V ∗(s) = arg max
a∈A

 ∑
s′∈S
T (s′ | s, a) (r(s, a) + γV ∗(s′))

 . (2.7)

The optimal value V π∗ under the optimal policy π∗ then satisfies:

V π∗(s) =
∑
s′∈S
T (s′ | s, π∗(s))

(
r(s, π(s), s′) + γV π∗(s)

)
. (2.8)

Additionally, from the Q-function, we can find the optimal policy by extracting the
maximal action at every state by:

π∗(s) = arg max
a

Q∗(s, a).

The benefit of the Q-function over the value function is, on top of giving value to
individual actions, that it does not require a summation over the transition dynamics to
find the optimal action.

We can determine optimal policies by applying various methods, such as value or
policy iteration (Puterman, 1994). Because these methods rely on the exact transition
probabilities, they require an explicit version of the true model and are aptly named
model-based. On the other side, we can use Q-learning, which is model-free. It is a
method for the reinforcement learning problem, in which a policy is to be found purely
from experience. It does not require the specifics of the transition dynamics:

Q+(s, a)← Q(s, a) + α ·
(

r + γ ·max
a

Q(s′, a)−Q(s, a)
)

= (1− α) ·Q(s, a) + α
(

r + γ ·max
a

Q(s′, a)
) (2.9)

where α ∈ [0, 1] is the learning rate that gives weight to the updates, and s′ is a possible
next state given that s was the previous state. Thus, this update considers the temporal
difference between the value of the current and next state. Note that in deterministic
models, where the transition function T : S × A → S is deterministic, this is a much
easier learning target as the difference in value is not subject to stochasticity, and thus
the target is stationary. Q-learning in the tabular setting is guaranteed to converge
to the optimal policy given that every state-action pair is visited infinitely in the limit
and α is decreased appropriately (Wiering and Van Otterlo, 2012). In general, finding
optimal policies for MDPs that maximise the expected return in either the finite or
discounted infinite horizon is considered tractable in general as it requires polynomial
time (Papadimitriou and Tsitsiklis, 1987).

2.1.2 Partial Observability
In the real world, the information supplied to the agent may be noisy or incomplete.
Examples include sensors with limited capacity or noisy signals, latency, and natural
stochastic tendencies of the components of the agent or the perception of the environment.

In order to accurately model these systems, we assume that the agent cannot directly
observe the full state. We call these systems partially observable and extend the MDP
with an observation model and the probabilities of these observations occurring. An ob-
servation can be seen as a noisy representation of the true state, a part of the whole state,

9

or any statistic that represents some information on the true state. What information
the agent actually does and does not observe is a modelling or environment design choice.

We define the partially observable model as an extension of the MDP (Def. 1).

Definition 2 (POMDP). The partially observable Markov decision process (POMDP)
as an extension of the MDP in Def. 1 is defined by the tupleM = ⟨S, b0,A, T , r, γ, Ω,O⟩,
with:

• S, b0,A, T , r, γ as defined in the MDP in Def. 1,

• Ω, a finite set of observations, and,

• O, the observation model O(o | s′, a) : S ×A → ∆(Ω) that specifies the probability
of observing o in state s′ given action a.

Observations. In a POMDP, we receive observations of the state with some probabil-
ity. As the state is no longer fully observable, we cannot define a policy as a mapping
from states to actions. Since we only receive observations of the state, we have to reason
about arbitrary-length histories of observations in order to plan optimally. An action-
observation history h⃗t = (⃗a0, o⃗1, a⃗1, o⃗2, . . . , a⃗t−1, o⃗t) ∈ (Ω × A)t−1 × Ω is the recorded
history of previous actions taken and observations received at time t ∈ N. As one can
imagine, in infinite horizons, this history can grow infinitely large. Fortunately, we can
capture the history of actions and observations as a probability distribution over the set
of states.

Definition 3 (Belief). A belief is a probability distribution over the set of states induced
by the initial state distribution b0 and the action-observation history:

b(s) ≜ Pr(s | b0, a0, o1, a1, . . . , at−1, ot). (2.10)

Additionally, the set of beliefs B ≜ ∆(S) is the probability simplex over the set of states.

We denote the probability that state s is assigned by belief b as b(s). The belief
distribution follows the standard rules for probabilities, i.e., ∑

s∈S b(s) = 1 and 0 ≤ b(s) ≤
1. Given Def. 3, a history h can be compressed into the belief distribution b ∈ ∆(S),
which is a sufficient statistic of the history (Kaelbling et al., 1998). That is, the belief
b(s) over a state s is Pr(s | b0, h), i.e., the probability of that state given the initial belief
b0 and recorded history h. The belief distribution is aptly named a belief state.

Values and policies for POMDPs. As in MDPs, we can maximise the infinite-
horizon cumulative discounted reward or return Rt = ∑∞

t γtrt, where rt is the reward
given by the state and action at time t ∈ N. Because we cannot rely on observing the
state, optimal action choices depend on the action-observation history, which can be
compressed into the belief.

Then, a deterministic policy π(a | b) : B → A is a mapping from history, i.e., the belief,
to actions. Additionally, a stochastic policy π(a | b) : B → ∆(A) is defined in a similar
fashion. The Q-value of a history ht with corresponding belief bt at time t under a policy
π, i.e., the Q-function Q : B ×A → R is the expected return given action at:

Qπ(ht, at) = Qπ(bt, at) = Eπ

[∞∑
t

γtr(st, at) | at+1 = π(bt)
]

. (2.11)

10

Similarly to the fully observable case, the value function V : B → R for a history can
be recovered from the Q-function for that history by retrieving the value of the maximal
action.

Belief Update

We have a prior distribution for the belief given by the initial state distribution b0 ∈ ∆(S)
of the model. The belief evolves over time, given that the system changes state and returns
observations for each action taken. The belief distribution bt can be updated by applying
Bayes’ rule, resulting in the successor belief state bt+1 as the posterior distribution given
the prior belief bt and the likelihood of the received observation o after taking action a:

BU(a, o, b)(s′) = Pr(s′ | a, o, b)

= Pr(o | s′, a, b) · Pr(s′ | a, b)
Pr(o | a, b)

= Pr(o | s′, a) ·∑s∈S Pr(s′ | a, b, s) · Pr(s | a, b)
Pr(o | a, b)

= O(o | s′, a) ·∑s∈S T (s′ | a, s) · b(s)
Pr(o | a, b) ,

(2.12)

where Pr(o | a, b) is a normalisation constant (Spaan, 2012) or marginal probability
ensuring ∀b∈B : BU(a, o, b)(·) are valid distributions, defined by:

Pr(o | a, b) =
∑
s∈S
O(o | s′, a) ·

∑
s∈S
T (s′ | a, s) · b(s). (2.13)

The complexity of the belief update is dependent on the cardinality of the set of states.
The denominator is quadratic in the number of states but only needs to be computed once.
The nominator is of complexity O(|S|), but we call the belief update on the enumeration
of all the possible successor states s′ ∈ S. Concluding, the belief update is quadratic in
the number of states of the system O(|S|2).

Belief-state MDP. Here, we show how a POMDP can be defined as an MDP with a
state space that consists of the set of beliefs B. We use the notion of a belief-state b ∈ B
and the definition of the belief update BU to formalise the belief-MDP for a POMDP,
which is an MDP with a continuous state-space.

Definition 4 (Belief-MDP). For a POMDP P = ⟨S, b0,A, T , r, γ, Ω,O⟩; the belief-
state Markov decision process (belief-MDP) (Cassandra et al., 1994) is defined by the
tuple MP = ⟨B, b0,A, τ, ρ, γ⟩, with:

• γ,A as in the the POMDP P ,

• B, the set of belief states, i.e., the belief simplex B ≜ ∆(S) (Def. 3), with initial
state b0,

• τ , transition probability function τ(b′ | b, a) : B × A → ∆(B) over the belief-states,
defined as:

τ(b′ | b, a) =
∑
o∈Ω

1(b′ = BU(a, o, b)) · Pr(o | a, b), (2.14)

where BU(a, o, b), Pr(o | a, b) as in Eq. (2.12) and (2.13), respectively.

11

• ρ, belief-based reward function ρ(b, a) : B×A → R specifying the immediate reward
given the belief-state b and action a defined by:

ρ(b, a) =
∑
s∈S

b(s) · r(s, a). (2.15)

Although we have removed the layer of partial observability from the problem by in-
troducing Def. 4, we had to introduce a continuous state-space that has a potentially un-
countably infinite size. POMDP planning is considered difficult. Infinite horizon planning
in POMDPs is undecidable (Madani et al., 1999), and finite horizon return maximisation
is PSPACE-complete (Papadimitriou and Tsitsiklis, 1987). Although finding solutions
for (typically uncountably) infinite MDPs is non-trivial (Ahmadi et al., 2021), we will
see later on in this thesis that this formulation can help to find suitable approximate
algorithms for solving POMDPs.

2.2 Multi-Agent Systems
Multi-agent systems (MAS), or more specifically multi-agent decision problems (MADP),
are a set of systems that encompasses models for decision-making under uncertainty
for multiple agents (Pynadath and Tambe, 2002; Oliehoek and Amato, 2016). Most
commonly, this set involves the extension of the earlier defined MDP and POMDP models
for multiple decision-making agents.

2.2.1 Cooperation
In this thesis, we consider cooperative agents that aim to achieve a shared goal. Con-
trastively, various – often game-theoretic – frameworks exist for adversarial or competitive
domains, such as stochastic games (Shapley, 1953; Mertens and Neyman, 1981). The clear
distinction between cooperation and competition between agents is modelled by the re-
ward function. In the cooperative case, the agents receive a single shared reward signal
that gives an indication of the value of a state given a joint action. Contrarily, adversarial
agents receive individual rewards that depend on the actions of other agents and aim to
beat the other agents in the system in order to maximise individual return.

2.2.2 Centralised Agents
Centralised multi-agent systems are systems containing decision-making agents that can
freely communicate their local state – or observations – and actions. The term “cen-
tralised” arises from the fact that there is, in theory, no distinction between the free
communication of individual agent controllers and the deployment of a centralised con-
troller that decides on actions and manages the individual components of the system.
We extend the notion of fully and partially observable decision-making domains to multi-
agent systems in the following definitions, respectively.

Definition 5 (MMDP). The multi-agent Markov decision process (MMDP) is defined
by the tuple M = ⟨I,S, b0,A, T , r, γ⟩, with:

• I, a finite set of agents of size n ∈ N,

• S, a finite set of states with initial state distribution b0,

12

• A = ×i∈IAi, a finite set of actions consisting of the Cartesian product of individual
action spaces for each agent i ∈ I,

• T , transition probability function T : S × A → ∆(S) specifying the probability of
new state s′ given the previous state s and joint action a⃗ = ⟨a1, . . . , an⟩,

• r, reward function r : S ×A → R specifying the immediate total reward given state
s and joint action a⃗, and,

• γ, the discount factor.

Note that the rare case of an MMDP with a single agent is synonymous with an MDP.
Similarly to the multi-agent extension of the MDP, we extend the partially observable
model to the multi-agent case as follows.

Definition 6 (MPOMDP). The multi-agent partially observable Markov decision pro-
cess (MPOMDP) is defined by the tuple M = ⟨I,S, b0,A, T , r, γ, Ω,O⟩, with:

• I,S, b0,A, T , r, γ as defined in the MMDP in Def. 5,

• Ω = ×i∈IΩi, a finite set of observations consisting of the Cartesian product of the
individual observation space for each agent i ∈ I, and,

• O, the observation model O(o⃗ | s′, a⃗) : S ×A → ∆(Ω) that specifies the probability
of observing joint observation o⃗ in state s′ given joint action a⃗.

The action space of an MMDP grows exponentially with the number of agents n. For
an MPOMDP, both the size of the action and observation space suffer from this combi-
natorial explosion. Thus, solving these problems exactly becomes increasingly intractable
for large n.

As communication is free and the components are identical, these multi-agent frame-
works can be reduced to their single-agent counterparts (Pynadath and Tambe, 2002).
In order to do so, the vector of per-agent actions and observations are concatenated and
treated as a single action and a single observation in the set of actions and observations
of the POMDP respectively. Consequently, solution methods for MDPs and POMDPs
are also applicable to their centralised multi-agent variants. Additionally, the definitions
of the value functions and policies are inherited from the single-agent models.

Therefore, we do not repeat the definitions of policies and value functions from
Sect. 2.1.1 to 2.1.2, as they are the same, apart from that they range over a single action
a and observation o instead of the joint versions a⃗ and o⃗ in the centralised multi-agent
models, respectively. Furthermore, we note that there is overlap between the definitions
of the single-agent and multi-agent models overlap, e.g., T is in both the (PO)MDP and
M(PO)MDP. From this point forward, we override these symbols and let them only refer
to their definitions in the multi-agent models, namely the MMDP and MPOMDP.

The distinction between the multi-agent and the single-agent case is useful as systems
with multiple agents often exhibit structure, either in the coordination of actions, the
decomposition value in the system, or a combination thereof. Additionally, the action
and observation spaces are factored, as they are comprised of the product of individual
actions and observations, respectively.

13

2.2.3 Decentralised Agents
If the agents cannot observe each other’s observations, i.e., they are not able to share
or communicate these, the problem becomes decentralised. For completeness’s sake, we
define these classes of multi-agent systems below.

Definition 7 (Dec-POMDP). The decentralised partially observable Markov decision
process (Dec-POMDP) is defined by the tuple M = ⟨I,S,A, T ,R, Ω,O⟩, where the
components are identical to those of the MPOMDP in Def. 6 but observations are only
observed locally per agent.

Contrary to the centralised – shared – observations of a MPOMDP, observations are
not shared in a Dec-POMDP. Consequentially, policies are mappings from individual
action-observation histories, and the joint policy π⃗ = (π1, π2, . . . , πn) is a vector of n
individual policies πi : (Ωi×Ai)∗×Ωi → Ai. If partial observability is only in the form of
decentralisation, such that each agent has full observability of its local state, the problem
transforms to a decentralised MDP.

Definition 8 (Dec-MDP). The decentralised Markov decision process (Dec-MDP) is a
jointly observable Dec-POMDP (Oliehoek and Amato, 2016), where the state is perfectly
observed by combining the agent-wise observations.

Each agent in a Dec-MDP can asses their local state perfectly but cannot observe the
state of other agents.

2.2.4 Complexity Classes
In Table 2.1, we see the complexity classes of solving multi-agent decision problems with
general (implicit) or free (explicit) communication given three levels of partial observ-
ability.

Observability General Communication Free Communication
Full MMDP (P) MMDP (P)
Joint Full Dec-MDP (NEXP) MMDP (P)
Partial Dec-POMDP (NEXP) MPOMDP (PSPACE)

Table 2.1: Effect of communication possibilities on model classes and complexity with
varying observability, from Kochenderfer (2015). Full observability means that agents can
see both the state and the other agents. Joint Full means only local states are observed.

In this thesis, we focus on systems with partial observability with free communication,
which allow for a centralised controller paradigm, as in MPOMDPs.

14

Chapter 3

Simulators & Tree Search

In the previous section, we have seen various models for sequential decision-making. The
drawback of these classes of models is in the complexity of the algorithms that find their
exact solutions. In this section, we will see how we can approximate the optimal value of
these models by Monte Carlo simulation. Although the methods outlined in this section
are not guaranteed to find the exact optimal solution, they tend to have good convergence
properties and can result in close approximations of the optimal value (Browne et al.,
2012).

Algorithm 1 Online planning methodology
1: procedure Execute(b0)
2: b← b0
3: repeat
4: a⃗# ← Search(b) ▷ Find an action a⃗# from belief b
5: o⃗, r ← G(· | a⃗#) ▷ Execute step in real environment.
6: b← Update(b, a⃗#, o⃗) ▷ Update belief with a⃗# and received o⃗.
7: until Interrupted
8: end procedure

Online planning. Online planners combat the complexity of large systems by interleav-
ing planning and execution. Here, we introduce this concept in the context of MPOMDPs
(Def. 6), but the framework is more general. Before executing an action in the true en-
vironment, an online planner performs a forward search in the set of states reachable
from the current belief, incrementally building a look-ahead tree known as a search tree.
It does so without explicit knowledge of the transition, reward, and, in some cases, the
observation model by using a generative model G : S × A → S × Ω × R of the dynam-
ics (Kearns et al., 2002), i.e., a simulator, with s′, o⃗, r ← G(s, a⃗). In that sense, online
planning lies between the model-free and model-based paradigms. We do require a model
in the form of a simulator, i.e., sample access to the state dynamics and observation
function, but we do not require the exact probabilities.

After a predefined amount of computational budget is spent on the forward search,
the planner executes an action a⃗# ∈ A and receives an observation o⃗ ∈ Ω, updates
the global belief b ∈ B given this action and received observation, and then repeats the
process until some predefined end. Algorithm 1 summarizes the iterative online planning
procedure. Planning starts from the initial belief b0 for the model considered, which

15

is assigned to the belief b maintained during the episode. This belief is passed to the
search algorithm, as searching is only performed in the reachable regions as given from
the current belief. The simulator G is called without a state in order to demonstrate
that states are not assumed observable. In practice, the episode is executed from some
random initial state as defined by the environment, and this state is updated by the
simulator sequentially. Moreover, note that we leave the update of the trees implicit here
for generality. The computational budget is spent primarily in Line 4 of Algorithm 1,
where in our experimental evaluation, we can restrict both the maximum time spent
searching and the maximum number of Simulate calls, and the search is interrupted by
violation of either constraint. In practice, the computational budget allowed would most
probably be defined by the planning time allowed per step. An example of an interrupted
signal can originate from an end-of-episode signal, e.g., receiving a terminal state from
the simulator.

3.1 Monte Carlo Tree Search
In this section, we will introduce a Monte Carlo planning technique that incrementally
builds a search tree. Monte Carlo planning techniques are a class of online planning
algorithms that make use of the simulator G to search for the best actions given the
reachable problem space defined by the current state of the system. In partially observable
settings, the current state of the system is not observable. Thus, a search is defined on
the current belief instead of the true state.

3.1.1 Bandit Algorithms in Monte Carlo Planning
The use of Monte-Carlo planning requires us to select actions that are either deemed
optimal or enable us to explore the reachable regions of the problem space. The Monte
Carlo tree search (MCTS) algorithm consists of building a search tree incrementally that
contains the possible paths from the current state. The stages of the algorithm can be
summarised as:

• The selection stage; where actions are selected to traverse and descend the tree,

• the expansion stage; where a new node of the tree is created for a newly visited
state,

• the simulation stage; where the value of newly created nodes is estimated by Monte-
Carlo rollout, and,

• the back-propagation stage; where, starting from the leaf to the root node, the visit
counts and the running averages in the nodes are incremented and updated by the
accumulated return, respectively.

It enables the application of multi-armed bandit algorithms to Monte Carlo planning.
Bandit problems are stateless reinforcement learning problems in which the agent is
tasked to find an optimal policy without access to a full specification of the underlying
model. Thus, a great influence on the performance of these algorithms is their adequacy
in balancing exploration and exploitation. That is, the algorithms need to simultaneously
explore to find the most profitable actions and, at the same time, ensure high performance

16

by exploiting the current knowledge of actions by acting greedily as often as possible.
Exploration concerns how well that agent is equipped to explore the possible sequences
of actions. Conversely, exploitation of the best possible sequences is needed to achieve
the best performance during learning. Discovering the best course of action sequences
is a challenging task and requires repeated trial and error. The measure of success in
these algorithms is the regret, which is the loss in return accumulated by following a
policy that is not globally optimal. We can define regret in this context as the difference
between the expected return, typically undiscounted, of the optimal policy π∗ and the
behaviour or learning policy π̂ that actually picks the actions. Note that π̂ might change
over time (Moerland et al., 2023), for example, due to the learning of better estimates of
the value function. The regret accumulated for the current time in the horizon t ≤ H is
then defined as:

Regrett = Eπ∗

[
t∑

k=1
rk

]
− Eπ̂

[
t∑

k=1
rk

]
, (3.1)

where rk denotes the reward achieves at time k, with the arguments left implicit. This
concept of the trade-off between the practices of maximising exploration and minimising
regret is commonly denoted as the exploration-exploitation dilemma and, as such, is
heavily studied in the literature of both reinforcement learning (Sutton and Barto, 1998;
Jaksch et al., 2010) and multi-armed bandits (Slivkins, 2019).

Upper confidence bounds. The upper confidence bound algorithm 1 (UCB1) by Auer
et al. (2002) acts as a simple deterministic policy that provides a good balance in terms
of regret by applying the principle of optimism in the face of uncertainty (OFU, Lai and
Robbins (1985)). OFU policies consider actions with high upper confidence bounds as
best. That is, actions for which the maximal return in expectation is highest are picked
deterministically. More formally, the algorithm achieves optimal logarithmic regret for
reward distributions with bounded support (Auer et al., 2002), i.e., reward functions with
a finite number of possible rewards.

Stateful confidence bounds. In stateless problems, picking actions based on UCB1
achieves good performance in terms of regret. However, in our case, we are interested
in the optimal policy for stateful problems such as MPOMDPs. Kocsis and Szepesvári
(2006) introduced an algorithm that applied the UCB1 algorithm to build search trees in
stateful domains, commonly denoted as upper confidence trees (UCT), combining Monte
Carlo-based planning with UCB1 action selection. In order to do so, a set of statistics
are maintained for every encountered state in the tree. These statistics include the visit
counts of the state, the number of times an action was picked, and the maximum likelihood
estimate (MLE) of the Q-value of all actions. The function is then defined as follows:

UCB(V, N, n) = V + c
√

log(N+1)
n+1 , (3.2)

where V is the value of an action a ∈ A as given by the MLE Q-value for a, e.g., Q(s, a)
in a fully observable setting, and c is the exploration constant. Then, at every node in the
tree during a simulation, the UCB1 algorithm decides the actions. Subsequently, a tree
is built incrementally from the traces generated by executing said actions in a simulator.

17

Algorithm 2 POMCP’s Search procedure.
1: procedure Search(h)
2: repeat
3: if h = ∅ then
4: s ∼ b0
5: else
6: s ∼ b(h) ▷ Root sampling from belief.
7: end if
8: Simulate(s, h, 0)
9: until Timeout ▷ Search until time or simulation limit.

10: end procedure

Algorithm 3 POMCP’s Rollout procedure.
1: procedure Rollout(s, h, d) ▷ d is the current depth.
2: if γd < ϵ then ▷ Return if the maximum depth is reached.
3: return 0
4: end if
5: a ∼ πrollout(h | ·) ▷ Rollout (e.g. random) policy.
6: s′, o, r ∼ G(s, a) ▷ Generative transition using simulator.
7: return r + γ ·Rollout(s′, hao, d + 1)
8: end procedure

3.1.2 Partial Observability
Silver and Veness (2010) introduced partially observable Monte Carlo planning (POMCP),
a well-known online algorithm for partially observable environments. The partially ob-
servable upper confidence trees (POUCT) algorithm is considered a subclass of POMCP
employed with an exact belief update, i.e., as in Eq. (2.12). The algorithms plan with a
look-ahead search tree comprised of paths of action and observation nodes, as is visible in
Fig. 3.1. These paths of action-observation sequences, i.e., histories, aggregated together
represent a sparse belief tree. These sequences are gathered from the traces left by the
states sampled at the root during their simulation.

Essentially, it performs MCTS, in the form of UCT, on the belief-MDP. It starts
sampling a state from the current belief. Then, it expands a trajectory of actions and
observations using a generative model G until it reaches a new node in the tree, after
which a (random) Rollout (Algorithm 3) estimates the value (Kocsis and Szepesvári,
2006).

a⃗ 1

o⃗ 1 o⃗ 2

a⃗ 2

o⃗ 1 o⃗ 2

Figure 3.1: POMCP search tree.

The return of a trajectory is used to update a set of statistics for history h that
include visit counts for the action N(h, a) and observation nodes N(h). Additionally, the

18

Algorithm 4 POMCP’s MCTS Simulate procedure.
1: procedure Simulate(s, h, d)
2: if γd < ϵ then
3: return 0 ▷ Return if the maximum depth is reached.
4: end if
5: if h ̸∈ T then ▷ If tree does not contain history.
6: for all a ∈ A do
7: T (h, a)← (N0(h, a), V0(h, a), ∅) ▷ Construct nodes.
8: end for
9: return Rollout(s, h, d) ▷ Get value estimate.

10: end if
11: a← arg maxa′ UCB(Q(h, a′), N(h), N(h, a′)) ▷ UCB (Eq. (3.2)).
12: s′, o, r ∼ G(s, a) ▷ Generative transition using simulator.
13: R← r + γ · Simulate(s′, hao, d + 1)
14: B(h)← B(h) ∪ {s} ▷ Add simulation state.
15: N(h)← N(h) + 1
16: N(h, a)← N(h, a) + 1

17: Q(h, a)← Q(h, a) +
R−Q(h, a)

N(h, a)
18: return R
19: end procedure

observation nodes include maximum likelihood estimates of the Q-values Q(h, a) of all
actions that are updated by a running average of the return. UCB1 decides which actions
are most promising during the search, balancing exploration and exploitation, which is
computed from the set of statistics (number of visits to observation node N , number of
visits to action node n, and value of action node Q) and the exploration constant c by
using Eq. (3.2):

argmax
a
{UCB(Q(h, a), N(h, a), n(h, a))} . (3.3)

As with most online planning algorithms summarised in Algorithm 1, the entry point
of POMCP is the Search function (Algorithm 2). The MCTS selection, expansion,
and back-propagation stages are combined in a Simulate function (Algorithm 4). The
simulation stage is represented by the Rollout function (Algorithm 3).

19

3.2 Particle filters
In systems with large state spaces, the belief update operation is infeasible as it depends
on a quadratic enumeration over the whole set of states. In this subsection, we outline a
common method to approximate beliefs empirically in online planning. A Particle Filter
(Thrun, 1999) is a way to empirically approximate the posterior distribution over a state
space.

3.2.1 Unweighted
The simplest form of this filter is the unweighted particle filter (PF). This filter consists
of a collection of K samples of the state space {si}K

i=1 where every individual particle
represents the probability of the state by one over the total number of particles. Formally,
the belief state is the sum of all particles in the filter:

b(s) ≈ b̂(s) =
1
K

K∑
i=1

δs,si
, (3.4)

where δs,si
is the Kronecker delta function δij = [i = j], as in Eq. (2.1). We can find state

si, with 1 ≤ i ≤ K in the filter b̂ by indexing si ← b̂(i). In the case that the state space
would be continuous, we would replace δs,si

with δ′(s − si) where δ′ denotes the Dirac
delta function. In POMDPs, the belief state is initialised by sampling K particles from
the initial state distribution b0. The particle-belief state can be seen as the posterior
belief state and represents an estimate of the current state P̂r(st | b0, ht) given the history
and the initial belief.

Intuitively, in an unweighted particle filter, one can think of this as follows:

Example 1. Consider an unweighted particle filter with K particles {(si)}K
i=1. If some

state s is represented n times in this particle filter, then the posterior density of this state

particle, as given by the filter, is b̂(s) =
n

K
.

Updating The particle filter is updated based on the chosen action and received ob-
servation of the system. The most straightforward method of this is by using rejection
sampling. Given the particle filter of size K, k ≤ K random particles are sampled from
that filter, and a step is made in the environment for each until the sampled observation
matches the true observation. Then, this next state s′ is added to the new particle set.
All other sampled states are rejected. A pseudo-code version of the rejection sampling
procedure is given in Sect. 3.2.1, from Kochenderfer (2015).

As the rejection sampling update method relies on the assumption that the given
observation will be sampled with some probability, this method is not suited for systems
with large discrete or continuous observation spaces. In continuous spaces, it is set to
fail as the probability of sampling two truly equal observations in the domain of reals is
zero. In large discrete sizes, this probability can get very small, resulting in a potentially
extremely large number of calls to the simulator before a particle can be accepted. This
greatly diminishes the computational efficiency of the filtering procedure.

20

Algorithm 5 Rejection sampling algorithm for updating particle filters.
procedure RejectionSampling(b, oreal, a)

b′ ← ∅
for 1 to |b| do

s ∼ b ▷ Sample random state from particle filter.
repeat

s′, o, r ∼ G(s, a) ▷ Query the generative model.
until o = oreal

b′ ← b′ ∪ {s′}
end for
return b′

end procedure

3.2.2 Weighted
A weighted particle filter (WPF) is a Bayes filter that includes the individual probability
of the particle. The belief is then approximated by the set of particles and their associated
weights: {(si, wi)}K

i=1. Similarly to Eq. (3.4), the weighted particle filter approximates
the posterior belief state:

b(s) ≈ b̂(s) =
K∑

i=1
wiδs,si

. (3.5)

Similar to the unweighted case, in order to form the approximate belief posterior, the
particles are propagated recursively given the previous set of particles and the incoming
observations. Ideally, the next set of particles would be sampled from the conditional
distribution Pr(st | st−1, ht}. However, it is often difficult or intractable to sample from
this distribution; thus, another method is required. Most commonly, an importance
sampling method is applied, where the proposal distribution is the dynamics function
Pr(st | st−1) and the propagated particles are weighted according to their importance as
given by the observation or evidence probability Pr(ot | st). The transition probability and
observation probability translate to the transition probability function T (st | st−1, a⃗t−1)
and observation model O(o⃗t | st, a⃗t−1) in a MPOMDP1 respectively, which include the
action taken at time t ∈ N.

As is evident from the paragraph above, in the case of a POMDP, a weighted particle
filter requires an observation model specification. Although this might be difficult to
specify exactly, an approximation of this model can suffice (Sunberg and Kochenderfer,
2018).

3.2.3 Sequential Monte Carlo
A weighted particle filter is essentially a sequential Monte Carlo (SMC) algorithm where
instead of sampling from the true distribution, we use a proposal and importance dis-
tribution that is contained within the model, e.g., the MPOMDP, itself. Abstractly, we
reason about a random variable, i.e., states, s ∼ T based on the probabilities of related
random variables, i.e., observations, o ∼ O.

1or in an POMDP, then with a ≡ a⃗, o ≡ o⃗

21

Very generally, SMC aims to approximate a sequence of target probability density
functions (PDFs), where the PDFs might be known up to a normalisation constant. The
dimension is increasing with t as the support of every function in this sequence is defined
as Rdt where d is the original dimension of the variables.

In order to do so, we make use of importance sampling. Importance sampling is a
variance reduction method that can be used in a Monte Carlo sampling approach. We
can approximate a target distribution P by sampling from a proposal distribution Q
and computing the importance weight given by the ratio between the distributions. The
importance weight ensures an unbiased distribution by correcting the biased proposal
distribution.

Monte Carlo estimates and importance sampling. Let us denote the target dis-
tribution as P(x). Given any function f , it might even be the identity function f(x) = x,
we can approximate the expectation of the distribution µ = EP [f(x)] with a Monte Carlo
estimate as follows:

EP [f(x)] =
∫

f(x)P(x)dx ≃a.s.
K→∞

1
K

K∑
i=1

f(xi), (3.6)

where xi ∼ P and ≃a.s.
K→∞ denotes “equals almost surely in the limit K → ∞”. We

write integrals here for generality, but these can be replaced by (Riemann) summations in
the discrete case that we consider. The target distribution might be a Bayes distribution,
which gives the following general equation from Bayes’ theorem:

P(x) = p(x | y) =
p(y |x)p(x)

p(y) , (3.7)

where y might be the incoming data or observations. P might be difficult to sample
from. In order to estimate the target distribution P , we introduce the use of a proposal
distribution Q. The importance weight w or likelihood is then given by the relative
importance:

w(x) =
P(x)
Q(x), (3.8)

We require f(x)P(x) > 0 → Q(x) > 0. The weights correct the bias introduced by
sampling from a different distribution (Bishop, 2006). Using this, we make the Monte
Carlo estimate based on samples from the proposal distribution:

EQ [f(x)] =
∫

f(x)
P(x)
Q(x)Q(x) ≃a.s.

K→∞
1
K

K∑
i=1

f(xi)w(xi) = µ̂Q, (3.9)

with xi ∼ Q sampled from the proposal distribution. Here we are estimating in
expectation, i.e., taking samples of the proposal distribution Q instead of P . Note that
µ̂Q is unbiased estimator of µ, as EQ [µ̂Q] = µ (Kennedy, 2016). In an ideal scenario, if
the proposal distribution is Q(x) = f(x)P(x)

µ
, then the variance of the estimator is zero.

Thus, as we do not know µ, we generally look for proposal distributions Q̂(x) that are
close to proportional to f(x)P(x), i.e., Q̂(x) ≈ Q(x) ∝ f(x)P(x).

22

Self-normalised. The target distribution P(x) = ηPP̃(x) might be known up to a
normalisation constant and similarly Q(x) = ηQQ̃(x) may be found to have the same
property. We then arrive at the following2:

EQ [f(x)] ≃a.s.
K→∞

K∑
i=1

w̃if(xi), w̃i =
wi∑
j wj

=
P̃(xi)
Q(xi)∑
j

P̃(xj)
Q(xj)

(3.10)

The perceptive reader might have noticed that we have now arrived at a form that
is similar to the estimate of the belief distribution given by the weighted particle filter
in Eq. (3.5). For the normalised importance weights, we have ∀i : w̃i ≥ 0 and ∑

i w̃i = 1.
The estimator in Eq. (3.10) requires P(x) > 0 → Q(x) > 0 and is biased, but often has
less variance in practice (Luo et al., 2019). Moreover, it is asymptotically unbiased in the
limit of the number of samples (Owen, 2013).

Sequential filtering. As we are interested in a consecutive estimate of the belief dis-
tribution, we require a sequential importance sampling (SIS) approach. Our target dis-
tribution might look like P(x) = p(x0:t | y0:t, x0:t−1) = p(xt | y0:t), where we denote the
sequence of t observations with y0:t = (y0, y1, . . . , yt), with naturally yt ≺ yt+1.

Non-linear filtering. From Bayes’ rule for conditional probabilities, we have in the
general filtering setting:

p(x0:t | y0:t) =
p(y0:t |x0:t)p(x0:t)

p(y0:t)
, (3.11)

where:

p(y0:t |x0:t) =
t∏

i=0
p(yi |xi), (3.12)

p(x0:t) =
t∏

i=0
p(xi |xi−1), (3.13)

p(y0:t) =
∫

p(y0:t |x0:t)p(x0:t)dx0:t. (3.14)

Since we are only interested in the filtering density p(xt | yo:t), we can proceed as
follows. For the non-linear filtering update equation, we have a recursion, starting at
p(xt | y0:t−1):

p(xt | y0:t−1)→ p(xt | y0:t) =
p(yt |xt)p(xt | y0:t−1)∫

p(yt |x′
t)p(x′

t | y0:t−1)dx′
t

, (3.15)

with the convention that p(x0 | y0) ≡ p(x0). We aim to approximate the filtering
distribution after the update in Eq. (3.15).

2Some derivations are omitted here for simplicity. For details we refer to Section 11.1.4, Bishop (2006)

23

Sequential importance sampling. The recursive version of the importance estimate
in Eq. (3.10) is:

∫
f(xt)p(xt | y0:t) ≈

K∑
i=1

w
(i)
t f(x(i)

t), (3.16)

where the algorithm depends on the proposal distribution Q(xt |x0:t−1, y0:t). The opti-

mal proposal is the target distributionQ(xt |x0:t−1, y0:t) = p(xt |xt−1, yt) =
p(yt |xt)∫

p(yt |xt)p(xt |xt−1)dxt

.
In practice, we often set the proposal distribution as the transition dynamics distribution
p(xt |xt−1), i.e., T .

A step in sequential importance sampling looks like the following:

1. Draw N samples from the proposal distribution x
(i)
t ∼ Q(xt |x(i)

0:t−1, y0:t).

2. Updated the weights up to a normalisation constant w̃
(i)
t = w

(i)
t−1

p(yt |x(i)
t)p(x(i)

t |x
(i)
t−1)

Q(xt |x(i)
0:t−1, y0:t)

.

In the case that the proposal distribution Q(xt |x(i)
0:t−1, y0:t) = p(x(i)

t |x
(i)
t−1) is the

prior transition probability distribution, as is the case in the well-known bootstrap
filter (Gordon et al., 1993), the weight update simplifies as w̃

(i)
t = w

(i)
t−1p(yt |x(i)

t).

3. Self-normalise the weights w
(i)
t =

w̃
(i)
t∑

j w̃
(j)
t

.

This works because Bayes’ theorem can be implemented as a weighted bootstrap
(Gordon et al., 1993). We are trying to acquire samples from the PDF proportional to
L(x)P̂(x), by sampling an empirical distribution p̂(x0) = {xi}K

i=0 from the prior of P̂(x),
and where L(x) is the known likelihood. We identify P̂(x) = p(xt | y0:t) as the prior and
L(x) = p(yt |xt) as the likelihood. Subsequent empirical distributions {(xi, wi)}K

i=0 with
probability mass wi = L(xi)∑

j
L(xj) tends in distribution proportional to L(x)P̂(x) almost

surely as K →∞ (Smith and Gelfand, 1992).

Re-sampling. Because the weights of an importance sampling estimate are unequal,
one can become much larger than the others. In this scenario, there is effectively only
a single observation. This phenomenon is called weight disparity. In the extreme case,
all weights might be zero, in which case importance sampling has obviously failed. One
statistic to diagnose weight disparity is the effective sample size (ESS), where imbalanced
weights give a result that is similar to averaging only k ≪ ESS observations (Owen,
2013). An approximation, as the true diagnostic depends on the intractable variance, of
the ESS can be computed from the importance weights:

ESS({wi}K
i=1) ≈

(∑
i wi)2∑
i w2

i

, (3.17)

where the simplification ESS({w̃i}K
i=1) ≈ 1∑

i
w̃2

i
holds if the weights w̃ are normalised.

Re-sampling then involves sampling K samples from the posterior estimate and setting
the weights to 1

K
. Given the ESS statistic, we can determine whether to re-sample. The

threshold of determining a re-sample is application-specific, and in practice re-sampling
can be executed at every step. Another method to determine whether to re-sample is

24

based on the relative disparity with respect to the number of samples in the estimate
(Wu et al., 2021).

3.2.4 Particle Filtering
In summary, the use of particle filtering renders the belief update tractable by main-
taining a recursive empirical distribution (Thrun et al., 2005). In an unweighted filter,
the approximate belief contains only states b̃ = {(si)}K

i=1 and is updated using rejection
sampling on the real observation o⃗; b̃ = {s′

i : o⃗ = o⃗i}, where s′
i, o⃗i are the next state and

observation as sampled from the generative model (Kochenderfer et al., 2015). Weighted
particle filters approximate the belief posterior by a set of K particles b̃ = {(si, wi)}K

i=1,
where si is a state particle with index i and wi the associated weight. For weighted
filters, we can update the belief using importance sampling techniques such as sequential
importance re-sampling (SIR) (Gordon et al., 1993). The posterior belief is computed at
every time-step by propagating the particles through the proposal distribution, i.e., the
transition function s′

i ∼ T (· | si, a⃗), and re-weighting according to its importance weight,
i.e., by the observation function w′

i ∝ wiO(o⃗ | s′
i, a⃗). Commonly, the posterior belief is

re-sampled to alleviate sample degeneracy, after which the weights are set to 1
K

. Whether
to re-sample can be decided by the threshold of the effective sample size (ESS) of the
particle filter with respect to the number of particles therein (Septier and Peters, 2016;
Wu et al., 2021). The effective sample size can be computed for a empirical distribution
to quantify weight disparity by the following equation:

ESS({(si, wi)}K
i=1) ≈

1∑K
i=1 w2

i

. (3.18)

Using the ESS as a threshold is an alternative to re-sampling after every filtering step
(Thrun et al., 2005). The likelihood of a belief update represents the probability of the
new belief given the observation, action, and previous belief. It is a statistic on the
quality of the approximate belief update. It is given by the sum of all updated weights
Lt = ∑

i w′
i with which the likelihood Lht of history ht can be propagated over time by

Lht ← Lht−1Lt (Katt et al., 2019). The full procedure of a SIR filter at time t, including
the use of ESS and propagating the likelihood, is given in Algorithm 6. Note that the
SIS filter is a simplified version of this algorithm, in which the ESS and re-sampling steps
are skipped.

25

Algorithm 6 A weighted particle filter (WPF) with SIR.
1: procedure SIR(at, ot, {(s⃗i

t−1, wi
t−1)}K

i=1, Lt−1, O, T , τ)
2: w ← 0 ▷ Keep track of total weight.
3: b̂(·)← ∅ ▷ Initialise new intermediate belief.
4: for i← 1 to K do
5: s

(i)
t ∼ T (· | s(i)

t−1, a⃗)
6: w

(i)
t ← w

(i)
t−1 · O(o⃗t | s(i)

t , a⃗t)
7: b̂(·)← b̂(·) ∪ {⟨s(i)

t , w
(i)
t ⟩}

8: w ← w + w
(i)
t

9: end for
10: b̂(·)← {⟨s(i)

t ,
w

(i)
t

wt
⟩}K

i=1 ▷ Normalisation.
11: if ESS(b̂(·)) ≤ τ then ▷ ESS threshold, Eq. (3.18).
12: b(·)← b̂(·) ▷ Insignificant weight disparity.
13: else
14: b(·)← ∅ ▷ Create final belief by re-sampling.
15: for i← 1 to K do
16: s

(i)
t ∼ b̂(·)

17: b(·)← b(·) ∪ {⟨s(i)
t , 1

K
⟩}

18: end for
19: end if
20: Lt ← Lt−1 · w
21: return b(·),Lt

22: end procedure

26

Chapter 4

Tree Search for Many-Agent
POMDPs

Previously, we considered finding approximate solutions by searching the set of states
that are reachable from the current belief. Additionally, we learned how to represent
such a belief empirically. In this chapter, we firstly consider a method from the literature
that provides a method to improve the generalisation of the algorithm across the solution
space induced by an environment with many agents. In particular, we consider a graphical
decomposition of the problem into several smaller connected sub-problems. Then, we
proceed to introduce novel algorithm variants, and subsequently apply a similar technique
to these variants.

4.1 Coordination Graphs
A coordination graph (CG) (Guestrin et al., 2002b; Oliehoek and Amato, 2016) is a
framework to model the interaction schemes of groups of agents in a network or graph.
In most scenarios with a large number of agents, there is a locality of interaction that
translates to naturally formed subsets or cliques of agents that attempt to achieve the
same goal. A coordination graph compactly represents the local interactions between
agents. In particular, the graph represents the inherent structure of multi-agent systems
by decomposing the global value function into a mixture of local functions over subsets
of agents (Amato and Oliehoek, 2015).

Coordination. Formally, a CG is a graph CG = (V , E) where each vertex v ∈ V
corresponds to an agent and each edge (i, j) ∈ e ∈ E indicates that agents i ∈ V and
j ∈ V interact locally. For a component e ∈ E , the local action a⃗e and observation spaces
o⃗e range over the product of the individual agent action ×i∈eAi and observation spaces
×i∈eΩi. These edges can also be hyper-edges, connecting multiple nodes (i.e., agents). In
this thesis henceforth, we assume that an edge e ∈ E in a coordination graph connects
two agents (i, j) ∈ e. In theory, any CG containing one or more hyper-edges can be
morphed into a graph with only pairwise dependencies (Kok and Vlassis, 2006a).

Using a given or inferred coordination graph, we can use the natural factorisation
of value that occurs from the interaction structure. In a coordination graph, the value
function is factorised in the sum of local per-agent utility functions and edge-based payoff
functions. For interpretability, we introduce it to stateless problems here, without history.
In a stateless setting the Q-function is decomposed as:

27

Q(⃗a) =
∑
i∈V

Qi(ai) +
∑

(i,j)∈E
Qij(ai, aj), (4.1)

with Qi(ai) the individual utility function of agent i and Qij(ai, aj) = Qe(⃗ae) the
pairwise payoff function for every edge connecting two agents i and j in the graph, with
ai ∈ Ai, aj ∈ Aj. In the subsequent paragraph, we do not consider the explicit indi-
vidual utility Qi(ai) of the agents. Incorporating this estimate can increase performance
marginally (Choudhury et al., 2022) but consequently increases the space complexity.

A mixture of experts. To predict the Q-value Q(⃗a) based on the local actions, we
define a local payoff function Qe(⃗ae) for each edge e ∈ E , where a⃗e ∈ ×i∈eAi is the local
joint action of the agents in e assigned by the joint action a⃗ ∈ A. This way, with these
local estimates of the global Q-value, we can use a mixture of experts (MoE) (Peng et al.,
2019) approach to estimate the Q-value of the joint action:

Q(⃗a) ≈ Q̂(⃗a) =
∑

e

αeQ̂e(⃗ae), (4.2)

where αe ≥ 0 is the weight of the expert for component e and ∑
e∈E αe = 1. In order to

pick the estimated maximising joint action a⃗# we maximise over the sum of restricted-
scope functions:

arg max
a⃗#

∑
e

αeQ̂e(⃗a#
e). (4.3)

More intuitively, we aim to find local actions (for the edges of the graph) that maximise
the estimated joint value function. Notice that any agent i might belong to multiple
edges. Therefore agent i must be assigned the same action a#

i ∈ Ai in all edges e ∈ E
where i ∈ e. This maximisation can be computed efficiently with graphical inference
algorithms, which are discussed in detail in chapter 6.

Analysis. Amato and Oliehoek (2015) prove that the MoE optimisation introduces a
policy-dependent bias term Bπ (⃗a) given sample policy π. This bias is introduced by the
overlap of the components, where agent i might be part of both component e and e′.
We denote the neighbouring components that overlap in the agents of e as Γ(e) = {e′ ∈
E \ {e} | e ∩ e′ ̸= ∅}, where e ∩ e′ is non-empty if there exists an agent i with i ∈ e and
i ∈ e′. Furthermore, we assume the experts are weighted uniformly, i.e., αe = 1

|E| such
that these weights can be omitted. We summarise their analysis here.

The MoE estimate approaches the true value plus the bias term Q̂(⃗a) ≈ Q(⃗a)+Bπ (⃗a).
Let a⃗e′\e, specified by a⃗, be the actions of agents in e′ that are not in e, and, conversely,
let a⃗e′∩e be the actions of the agents that participate in both e and e′. Then, the bias
term is defined as:

Bπ (⃗a) ≜
∑

e

∑
e′ ̸=e

∑
a⃗e′\e

π(⃗ae′\e | a⃗e)Qe′ (⃗ae′\e, a⃗e′∩e). (4.4)

Bias by itself is not an issue, but differing biases per joint action can result in non-
optimal action selection. Fortunately, their proof also encompasses that the bias terms
between actions are bounded by ∀a⃗,⃗a′ : |Bπ (⃗a)−Bπ (⃗a′)| ≤ ϵ if the Q-function is sufficiently
structured. In the case that value functions do not overlap, MoE recovers the maximal
joint action. If they do overlap, then we have the following.

28

Theorem 4.1.1. If for components with overlap e, e′, and any two a⃗e′∩e, a⃗′
e′∩e ∈ Ae′\e,

with Ae′\e the set of actions with overlap, the true value function Q satisfies:

∀a⃗e′\e
: Qe′ (⃗ae′\e, a⃗e′∩e)−Qe′ (⃗ae′\e, a⃗′

e′∩e) ≤
ϵ

|E| · |Γ(e)| · |Ae′\e| · π(⃗ae′\e)
, (4.5)

then MoE optimisation will return an ϵ-optimal joint action in the limit.

Proof. See the proof for Theorem 6 in the appendix of Amato and Oliehoek (2015).

4.2 Factored-Value POMCP
Factored-Value POMCP (Amato and Oliehoek, 2015) consists of two techniques that
exploit the structure of a CG to scale POMCP to problems with large action and obser-
vation spaces. These techniques factor the action space to introduce statistics for each
component e ∈ E of a graph CG = (V , E) to compute the UCB1 values of the local joint
action space a⃗e. The two variants are outlined next.

4.2.1 Factored Statistics
factored-statistics (FS) POMCP (FS-POMCP) reduces the number of statistics main-
tained and improves the efficiency of action selection in large action spaces. The tree
structure remains the same as in Fig. 3.1 for the joint history h⃗ and associated visit
count N (⃗h), but the value nodes (circles in Fig. 3.1) maintain a set of statistics Qe(⃗h, a⃗e),
N (⃗h, a⃗e) for each edge e ∈ E , independently, instead of for every Q(⃗h, a⃗). Thus, the MoE
optimisation from Sect. 4.1 is applied directly in each node of the search tree. The im-
provement to vanilla POMCP is that fewer statistics are maintained, as the combination
of local action spaces a⃗e of each component e ∈ E is smaller than the joint action space a⃗.
A graphical inference algorithm then selects the maximal joint action a⃗# by maximising
over the set of local UCB1 values of the Q-values induced by the CG (using Eq. (3.2)):

arg max
a⃗#

∑
e∈E
UCB(Qe(⃗h, a⃗e), N (⃗h), N (⃗h, a⃗e)). (4.6)

Progressive widening. Sunberg and Kochenderfer (2018) introduce POMCPOW, POMCP
with observation widening and weighted particle filtering to tackle POMDPs with con-
tinuous states and observations. Progressive widening (Browne et al., 2012) consists of
limiting the number of children action and observation nodes can have based on the
number of times said nodes were visited in the past. For increasing number of visits, the
number of allowed children is increased according to a formula NC = kNβ, where NC

is the number of children, N the number of times the nodes was visited, and k and β
the hyper-parameters that balance the weight of the allowed children with respect to the
number of visits. The same formula can be used for the action and observation nodes in
the three, with possibly different ka, ko and βa, βo for each type of node. We introduce
FS-POMCPOW as the direct application of FS to POMCPOW’s Simulate function.
The large action space is then addressed by the FS paradigm, and the large observation
space by progressively widening the growth in breadth of the search tree. This results in
a versatile algorithm that is well suited for MPOMDPs.

29

a⃗ 1
e1

o⃗ 1
e1 o⃗ 2

e1

a⃗ 2
e1

o⃗ 1
e1 o⃗ 2

e1 · · · e · · ·

a⃗ 1
e|E|

o⃗ 1
e|E|

o⃗ 2
e|E|

a⃗ 2
e|E|

o⃗ 1
e|E|

o⃗ 2
e|E|

Figure 4.1: Factored POMCP, with a separate search tree for every e ∈ E . In this
example, we show a possible tree for two e, where we branch on two actions and two
observations each.

4.2.2 Factored Trees
factored-trees (FT) POMCP (FT-POMCP) builds a tree for every e ∈ E for the fac-
tored history h⃗e, which consists of a sequence of factored actions and observations h⃗e,t =
(⃗ae,0, o⃗e,1, . . . , a⃗e,t−1, o⃗e,t). This further reduces the scope of Qe(⃗h, a⃗e) to Qe(⃗he, a⃗e) by in-
troducing an expert for every h⃗e, a⃗e pair. Fig. 5 in the appendix shows the first and
last tree out of the |E| trees built in parallel, where both trees are depicted with a single
expansion level. In each tree, the nodes maintain MLE statistics Qe(⃗he, a⃗e), N (⃗he), and
N (⃗he, a⃗e), according to the factored history h⃗e. Again, an inference algorithm selects the
maximal joint action a⃗# by maximising over the set of factored actions with respect to
their UCB1 value (using Eq. (3.2)):

arg max
a⃗#

[∑
e∈E
UCB(Qe(⃗he, a⃗e), N (⃗he), N (⃗he, a⃗e))

]
. (4.7)

Let Te(⃗he,t−1, a⃗e,t−1, o⃗e,t) denote the tree for factor e that represents the history h⃗e,t−1a⃗e,t−1o⃗e,t.
After a step in the true environment executing action a⃗e,t−1 and receiving observa-
tion o⃗e,t, we prune the search tree as follows. For all factors e ∈ E , the tree node
Te(⃗he,t−1, a⃗e,t−1, o⃗e,t) becomes the respective new root. If the tree node Te(⃗he,t−1, a⃗e,t−1, o⃗e,t)
does not exist for any e ∈ E , a new tree is built from scratch for that particular component
e.

The pseudo-code of the FT version of the original POMCP simulate function is out-
lined in Algorithm 7.

Analysis. Amato and Oliehoek (2015) introduce a strong result that the FT variant
might diverge when UCB1 with exploration constant c = 0 is employed. In that case,
the algorithm corresponds with a class of Monte-Carlo control, such as SARSA(1), with
linear regression. These settings divert in general (Fairbank and Alonso, 2012).

This can be explained by the fact that instead of the full history h⃗, the local history h⃗e

is not Markov if the factors are not independent. In practice, the exploration constant c
of the UCB1 policy during the search is never set to zero, except for when the final action
is picked for execution in the true environment. Although UCB1 is a greedy policy with
respect to the upper confidence bounds of the Q-values, it is not clear how the exploration
bonus of the UCB1 policy affects the convergence of the algorithm. Additionally, UCB1 is

30

Algorithm 7 Factored-Trees-POMCP’s Simulate procedure.
1: procedure Simulate(s, h, d)
2: if γd < ϵ then
3: return 0 ▷ Return if the maximum depth is reached.
4: end if
5: for all e ∈ E do ▷ Enumerate every component/factor tree.
6: if h⃗e ̸∈ Te then ▷ If tree does not contain history.
7: for all a⃗e ∈ A⃗e do ▷ Enumerate component actions.
8: Te(⃗he, a⃗e)← (N0(⃗he, a⃗e), V0(⃗he, a⃗e), ∅) ▷ Construct nodes.
9: end for

10: end if
11: end for
12: if ∃e∈E : h⃗e ̸∈ Te then
13: return Rollout(s, h⃗, d) ▷ Get value estimate.
14: end if
15: a⃗← arg max′

a⃗

[∑
e UCB(Qe(⃗he, a⃗e), N (⃗he), N (⃗he, a⃗′

e))
]

▷ VE or MP.
16: s′, o⃗, r ∼ G(s, a⃗) ▷ Generative transition using simulator G.
17: R← r + γ · Simulate(s′, h⃗a⃗o⃗, d + 1)
18: for all e ∈ E do ▷ Update statistics for every tree.
19: B(⃗he)← B(⃗he) ∪ {s} ▷ Add simulation state.
20: N (⃗he)← N (⃗he) + 1
21: N (⃗he, a⃗e)← N (⃗he, a⃗e) + 1

22: Qe(⃗he, a⃗e)← Qe(⃗he, a⃗e) +
R−Qe(⃗he, a⃗e)

N (⃗he, a⃗e)
▷ Update expert.

23: end for
24: return R
25: end procedure

31

not a component-wise policy as it is defined for the full action space. However, FT variants
might produce high-quality results in practice, especially when the problem benefits from
an increased search depth. Such search depth is made possible due to the additional
generalisation offered by considering local histories.

32

4.3 Particle Belief-Space Planning for MPOMDPs
In this section, we lift the sparse particle filter tree (PFT) algorithm (Sunberg and
Kochenderfer, 2018; Fischer and Tas, 2020a; Lim et al., 2020, 2023) to MPOMDPs. As
before, we propose extensions that exploit the factorization of the action space as in-
duced by coordination graphs. Firstly, we introduce particle belief approximation, and
subsequently, PFT for MPOMDPs. Then, we introduce factored-statistics (FS) PFT
(FS-PFT) and factored-trees (FT) PFT (FT-PFT) to combat large action spaces.

4.3.1 Particle-Belief MMDP
As introduced in Sect. 2.1.2, POMDPs can be represented by fully observable belief-MDP
with the same action space as the POMDP and the beliefs as states (Cassandra et al.,
1994). Similarly, an MPOMDP has a belief-MMDP. The belief-MMDP for a MPOMDP
is similar to how MDPs relate to MPOMDPs and can be deduced from Def. 4 by aptly
replacing the single-agent spaces with joint spaces from the MPOMDP. Particle-belief
MDPs approximate belief-MDPs (Lim et al., 2020, 2023), by representing the posterior
belief distribution by a finite number of samples in a particle filter.

We introduce the particle-belief-MMDP as an approximation of a belief-MMDP:

Definition 9 (PB-MMDP). The particle-belief-MMDP corresponding to an MPOMDP
M = ⟨I,S, {Ai}, T , r, {Ωi},O, γ⟩ as in Def. 6 is a tuple ⟨I, Σ, {Ai}, τ, ρ, γ⟩, with:

• I, Ai, γ as in the original MPOMDP M (Def. 6);

• Σ, the state space over particle beliefs b̃ = {(si, wi)}C
i=1, where si ∈ S, wi ∈ R+ is

the associated weight of state particle si, and C = |b̃| the number of particles;

• τ , the transition density function τ(b̃′ | b̃, a⃗) : Σ × A → ∆(Σ). Given that the im-
portance weights are updated according to the observation density:

w′
i ∝ wiO(o⃗ | a⃗, si), (4.8)

that transition density is defined as:

τ(b̃′ | b̃, a⃗) ≡
∑
o⃗∈Ω

Pr(b′ | b, a⃗, o⃗) Pr(o⃗ | b, a⃗) (4.9)

• ρ, the reward function ρ(b̃, a⃗) : Σ × A → R defined by ρ(b̃, a⃗) =
∑

i
wir(si ,⃗a)∑

i
wi

, with r

the reward function of the MPOMDP. If the original reward function r is bounded
by r ≤ rmax then ρ is bounded by ||ρ||∞ ≤ rmax as the importance weights sum to∑

i wi = 1.

Defining the transition density. The first term Pr(b′ | b, a⃗, o⃗) in Eq. (4.9) is the
conditional transition density given observation o⃗. This probability is synonymous with
the belief update function in Eq. (2.12), albeit for a particle belief. The state transition
updates for each particle in the particle belief are independent of each other, and the
update of the likelihood weight is deterministic given si, s′

i, a⃗, o⃗. Furthermore, the integral
is only non-zero when b′ = {(s′

i, w′
i)})C

i=1, such that the calculation simplifies to the

33

product of the individual transition densities given that the likelihood update matches
(Lim et al., 2023):

Pr(b′ | b, a⃗, o⃗) =

∏C
i=1 T (s′

i | si, a⃗) if ∀i : w′
i = wiO(o⃗ | a⃗, si), and,

0 otherwise.
(4.10)

The second term Pr(o⃗ | b, a⃗) is the observation likelihood given a particle belief and
a joint action. Again, we need to define this probability, which is given for an exact
belief in Eq. (2.13), for a particle belief. The likelihood is equivalent to the weighted sum
of the observation likelihoods conditioned on the probability that this observation was
generated from state particle si:

Pr(o⃗ | b, a⃗) =
∑C

i=1 wi · [
∑

s∈S O(o⃗ | s′
i, a⃗)T (s′

i | si, a⃗)]∑C
i=1 wi

. (4.11)

Although this transition density is difficult to calculate exactly, it is possible to sample
from it. Given that we do not require true probabilities of the dynamics but mere
simulation access (chapter 3), we can use this model to plan with in an online fashion.

Advantage of conversion. PB-MMDPs are special MDPs and thus allow the direct
application of MDP methods, e.g., MCTS. This requires us to update the associated gen-
erative model: We simulate particle-beliefs instead of individual states and thus change
G to GP F : Σ×A → Σ×P(R). This extension increases the complexity of the generative
model by a factor O(C) and is outlined in Algorithm 8. A tree for PFT (Fig. 4.2) repre-
sents a sparse particle-belief tree. Tree nodes are constructed for actions and subsequent
belief nodes, where each action node can have up to C children. More specifically, the
belief nodes contain particles, representing a particle-belief state.

b̃

a⃗ 1

b̃′1 b̃′C

a⃗ 2

b̃′1 b̃′C.

Figure 4.2: Sparse particle-belief tree.

Approximation quality. Lim et al. (2023) show that, under a set of assumptions,
the approximation error of the optimal value of a PB-MDP to a POMDP is small with
high probability. In addition to a finite horizon H, and a finite action space A, the
proof relies on a reward function r of the POMDP (MPOMDP in our case) that is
bounded and Borel measurable, such that ||r||∞ ≤ rmax < +∞, and the following holds

for the maximum value Vmax ≡
rmax

1− γ
< +∞. Finally, their proof assumes the state

and observation spaces are continuous, but note that it also holds for discrete spaces as
long as the Rényi divergence d∞(Pd || Qd) between the target Pd and the proposal Qd

distributions is bounded above almost surely by dmax
∞ , up to a given maximum depth D,

with 0 ≤ d ≤ D:

34

Algorithm 8 Generative step for a particle belief-state.
1: procedure GP F (b̃, a⃗)
2: s0 ∼ b̃
3: o⃗← G(s0, a⃗)
4: b̃′ ← ∅, C ← |b̃|
5: for i← 1 to C do
6: s′

i, r ← G(si, a⃗)
7: w′

i ← O(o⃗ | a⃗, s′
i)

8: b̃′ ← b̃′ ∪ {(s′
i, w′

i)}
9: end for

10: ρ←
∑

i
wiri∑
i

wi

11: return b̃′, ρ
12: end procedure

d∞(Pd||Qd) = ess sup
x∼Qd

w̃(x) ≤ dmax
∞ < +∞, (4.12)

Where w̃(x) is the self-normalised weight as in typical sequential Monte Carlo (Sect. 3.2.3).
More intuitively, this means that the ratio between the marginal p(y) and conditional
p(y |x) observation probability cannot become infinitely large. Within these assump-
tions, the proof also holds in our discrete setting by replacing the integrals to (Riemann)
sums, but we do not give it here as it is rather involved and beyond the point of this
thesis. For more details on the proof for the continuous setting, we refer to Lim et al.
(2020, 2023).

Sparse particle filter tree. Sparse-PFT is equivalent to UCT with particle-belief
states. While it was designed for continuous state spaces, the fact that the tree branches
on a fixed amount of belief nodes instead of the number of (joint) observations is also
beneficial in our setting. Sparse-PFT constructs a sparse look-ahead particle-belief tree,
depicted in Fig. 4.3, incrementally during a forward search by allowing each action node
to expand up to C particle-belief nodes. The particle-belief nodes correspond to the states
of the particle-belief MMDP (Def. 9). The root particle-belief b̃ ←

{
(si,

1
C

)
}C

i=1
∼ b is

sampled at every simulation iteration from the current belief b, where b is maintained
during the episode as in Algorithm 1. During forward search, UCB1 selects the actions
a⃗. If the number of children of the action node a⃗ is less than C, then the particle-belief
is simulated through GP F (Algorithm 8) to obtain the next particle-belief b̃′ and belief-
based reward ρ. Otherwise, b̃′ and ρ are sampled uniformly from one of its children. We
continue traversing the particle-belief tree until we reach a leaf node or a predetermined
maximum depth. The MLE Q(b̃, a⃗) is updated according to the return of a particle
belief, i.e., the expected cumulative discounted belief-based reward, Pt = ∑H

t γtρt, which
is used synonymously to the return Rt the update the expert predictions Q(b̃, a⃗) ←
Q(b̃, a⃗) + Pt−Q(b̃,⃗a)

N(b̃,⃗a) when the statistics are updated in the simulate procedure.
In MPOMDPs, PFT suffers from a similar problem as POMCP, namely the exponen-

tial number of joint actions that need to be considered via UCB1. To improve on the
algorithm’s weakness in large action spaces, we introduce two extensions.

35

4.3.2 Coordination Graph Particle Filter Tree
We alleviate the algorithm’s weakness to large action spaces by incorporating the CG
approximations from factored POMCP to the sparse particle filter tree. This combination
produces two new algorithm variants.

Factored Statistics

For the first variant, we propose factored statistics PFT (FS-PFT), in which we keep
factored UCB1 action statistics in the nodes of the particle filter tree. In addition to the
belief-node count N(b̃), we maintain sets of statistics Qe(b̃, a⃗e), N(b̃, a⃗e) in every particle
filter belief node that predicts the Q-function for every component e ∈ E , applying
MoE optimisation (Eq. (4.2)) in the particle belief-states. Then, in a similar fashion to
algorithms of Sect. 4.2, a graphical inference algorithm selects the maximal joint action
a⃗# by maximising over the sets of upper confidence bounds: induced by the coordination
graph:

arg max
a⃗#

∑
e∈E
UCB(Qe(b̃, a⃗e), N(b̃), N(b̃, a⃗e)). (4.13)

Factored Trees

For the second variant, we introduce factored trees PFT (FT-PFT), where we construct
multiple particle filter trees in parallel for each e ∈ E . Each tree has a local action space
a⃗e and maintains individual statistics Qe(b̃, a⃗e), Ne(b̃), Ne(b̃, a⃗e) for every e ∈ E . The
pseudo-code of the Simulate procedure is available in Algorithm 9 Since particle filter
trees do not branch on observations, only the action space is factored in the trees. We
use a single particle belief step in each layer and build the trees in parallel. Thus, every
tree is constructed from the same simulated particle filter beliefs. Although the belief
nodes might consist of the same particle filter belief, we maintain independent visit count
statistics Ne for each belief node and associated local joint actions per tree, respectively.
We suspect the improvement of this variant is an increase in node re-use and search depth
due to the smaller factored action space in each tree. An overview of these trees with one
layer of depth can be seen in Fig. 4.3. The inference equation for picking the maximal
UCB action (using Eq. (3.2)) is given by:

arg max
a⃗#

∑
e∈E
UCB(Qe(b̃, a⃗e), Ne(b̃), , Ne(b̃, a⃗e)). (4.14)

b̃

a⃗ 1
e1

b̃′1 b̃′C

a⃗ 2
e1

b̃′1 b̃′C.
· · · e · · ·

b̃

a⃗ 1
e|E|

b̃′1 b̃′C

a⃗ 2
e|E|

b̃′1 b̃′C.

Figure 4.3: Factored sparse particle-belief trees.

36

Algorithm 9 FT-PFT’s Simulate procedure.
1: procedure Simulate(b̂, d)
2: if γd < ϵ then
3: return 0
4: end if
5: for all e ∈ E do
6: if b̂ ̸∈ Te then
7: for all a⃗e ∈ A⃗e do
8: Te(b̂, a⃗e)←(N0(b̂, a⃗e), V0(b̂, a⃗e), ∅)
9: end for

10: end if
11: end for
12: a⃗← maxa⃗#

∑
e∈E UCB(Qe(b̂, a⃗e), Ne(b̂), Ne(b̂, a⃗e)) ▷ VE or MP (Eq. (3.2)).

13: if ∃e∈E : |Che(b̂, a⃗e)| ≠ C then ▷ If any node can be expanded.
14: b̂′, ρ← GP F (b̂, a⃗) ▷ Generative transition (Algorithm 8).
15: for e ∈ E do
16: Che(b̂, a⃗e)← Che(b̂, a⃗e) ∪ {(b̂′, ρ)}
17: end for
18: P ← ρ + γ ·Rollout(b̂′, d + 1)
19: else
20: b̂′, ρ ∼ {Che(b̂, a⃗e) | e ∈ E}
21: P ← ρ + γ · Simulate(b̂′, d + 1)
22: end if
23: for all e ∈ E do ▷ Update statistics for every tree.
24: Ne(b̂)← Ne(b̂) + 1
25: Ne(b̂, a⃗e)← Ne(b̂, a⃗e) + 1

26: Qe(b̂, a⃗e)← Qe(b̂, a⃗e) +
P −Qe(b̂, a⃗e)

Ne(b̂, a⃗e)
27: end for
28: return P
29: end procedure

37

Chapter 5

Scalable Particle Filtering

As we have seen previously, the Bayesian filter belief update requires O(|S|2) computa-
tions. In MPOMDPs with large state spaces, which often contain millions to billions of
states, this becomes intractable. To ensure we can scale to large problems, we represent
this belief with particle filters. Due to the large size of these models, when many agents
are involved, we run into trouble when updating the filter. In this chapter, we briefly
describe why and then proceed to the proposed resolutions. We consider two filtering
procedures, which each have their benefits and drawbacks.

• In the first method presented, we adopt a well-known monitoring method by Ng
et al. (2002) to represent the belief by an empirical distribution that ranges over
the product of a set of clusters.

• In our method, introduced secondly, there are multiple particle filters in an ensemble
with differing importance weight update functions.

Particle filtering in MPOMDPs. In MPOMDPs, the observation signal becomes
increasingly sparse as the number of agents increases, as it commonly depends on the
probability of all individual observations. This can result in an impoverishment of the
particles. Comparably, for unweighted filters in larger observation spaces, the likelihood
to match the received joint observation in the rejection update is small. If the particle
filter reaches a deprived state where no particles remain, the planner has to rebuild the
belief from the recorded history or default to a baseline policy.

5.1 Factored Particle Filtering
In this section, we present an approach to increase the scalability of the particle filters. We
adopt a method from the literature to improve the belief approximation in an MPOMDPs
online planning setting with many agents.

Before giving the method, we introduce a required assumption.

Assumption 1 (Factored State Space). The state space S of an MPOMDP can be
factored by S = ×X ∈χ if it can be defined by the product of a set of variables χ =
{X1,X2, . . . ,X|χ|}, also known as factors or features. Furthermore, the observations Ωi

of each agent i ∈ I of the MPOMDP are influenced by a subset of the set of variables
ζi ⊆ χ.

38

Even though the state space might be factored, we do not assume that we have access
to a factored simulator or that the value function is exactly factored. Leveraging the
structure of state spaces is known to be effective in the filtering problem for large state
spaces (Chen et al., 2022). We exploit Assumption 1 in a filtering method from Ng et al.
(2002). We summarise and introduce its direct application to MPOMDPs here. For
simplicity, we only consider weighted filtering, as it is unclear how to properly attribute
relative importance to the particles in an unweighted setting.

Factored particle filtering (FPF, Ng et al. (2002)) works as follows. We define a set
of clusters C = {c1, c2, . . . , c|C|}, where each cluster c ∈ C maintains a set of factored
particles s(1)

c , . . . , s(Nc)
c , with Kc the number of particles in c, which may vary over time.

In our case, the set of clusters C can be defined to be synonymous with the set of edges E
from the CG. Let Ic ⊂ I be the set of agents associated with cluster c and let ζi be the
state variables associated with agent i ∈ I. Then, χc ≜ ∪i∈Ic ζi are the state variables
of the agents Ic associated with cluster c We define the set of factored particles Sc for
cluster c, i.e., the cluster state space, as the product of the state variables Sc ≜ ×X ∈χc .
The belief state is then approximated as the product of the cluster distributions, where
particle filtering is used as a non-parametric density function, as given by:

b(s) ≈
∏
c∈C

1
Kc

Kc∑
i=1

δ
sc,s

(i)
c

, (5.1)

where δ is the Kronecker delta function, sc indexes the cluster variables of s as given by
the cluster c and s(i)

c is the same but for particle si ∈ b in the filter.

5.1.1 Factored Filtering
Filtering consists of two main methods. Intuitively, the process is outlined as follows.
We maintain full-state particles and update these with a standard filtering method, such
as SIR (Algorithm 6). Then, we distribute the full-state particles over the clusters and
construct full-state particles by sampling from these local subsets. This set of joined
factored particles can be larger than the original set of full-state particles.

Projection. Firstly, we introduce the notion of the projection of a full state particle
s ∈ S to a factored particle sc ∈ Sc. For every cluster c ∈ C, we can find the factored
particle sc by projecting s to the subset of state variables of s that are in Sc. In doing
so, s is projected to a factored particle sc for every cluster c ∈ C.

Example 2. Consider the following example of a projection, adopted from Ng et al.
(2002), for clusters c1 = {X1,X2}, c2 = {X2,X3}:

X1 X2 X3

s1 1 1 1
s2 2 1 2
s3 2 2 2

⇒

X1 X2

s1,1 1 1
s2,1 2 1
s3,1 2 2

and

X2 X3

s1,2 1 1
s2,2 1 2
s3,2 2 2

39

Algorithm 10 Sample-based join procedure for FPF.
1: procedure SampleJoin(C, N)
2: b← ∅
3: for i← 1 to N do
4: wi ← 1 , Z ← ∅ , si ← ∅
5: for c ∈ C do
6: Y ← χc ∩ Z
7: si,c ∼ P y

c ▷ P y
c is consistent with assignment y ∈ Y .

8: wi ← wi · |P Y
c |

|Pc| ▷ Relative importance weight.
9: Z ← Z ∪ χc

10: end for
11: b← b ∪ {(si, wi)}
12: end for
13: return b
14: end procedure

Complete Updated

SampleJoin

FactoredSIR Projection

Figure 5.1: Schematic overview of FPF, adopted from Ng et al. (2002). The process is
as follows. From a set of complete particles at time t, we update and re-sample these
particles to arrive at a subsequent filtering distribution with uniform weights. Then,
we project (Sect. 5.1.1) the particles to their factored representation. From these sets
of factored particles, we construct a (larger) new set of particles by the sample-join
procedure (Sect. 5.1.1), resulting in a set of complete particles at time t + 1 with weights
defined by the relative importance of the sample in the SampleJoin operation.

Joining particles. Secondly, we run the SampleJoin algorithm to build N full-state
particles from the collection of projected particles, where N is the desired number of
constructed particles. Let Pc be the set of particles of cluster c, and let P y

c ⊆ Pc be the
set of particles that agree with the previously chosen variables y ∈ Y . Then, the update
procedure is given by Algorithm 10. Note that in practice, instead of using a fixed order
at every iteration, we shuffle the order of enumerating every cluster in line 5.

5.1.2 Drawbacks
By introducing a reversible transition to a factored sub-space, this technique is able to
produce a larger number of particles to sample from and can give a better approximation
to the belief posterior in multi-dimensional systems. Unsurprisingly, the combination
of these transformations introduces computational overhead. Although the projection
operation is relatively straightforward, it can take more time when the number of clusters
becomes larger. A more substantial problem with computational overhead and a large
number of clusters is in joining the projected particles. Recall that we define the number
of clusters to depend on the number of edges in the CG. With a large number of clusters,

40

the joining procedures arrive at a bottleneck when the factored spaces are coupled. As
with every factored particle chosen, the constraint is introduced that particles sampled
from a subsequent cluster must adhere to the previously assigned variables. It can thus
be the case that even after significant iterations, there are no complete particles found.
There are two possible solutions. Either the clusters can be merged arbitrarily to a
predefined maximum number of clusters. Or, the clusters must be defined such that they
are disjoint. Both are not optimal, as either the clustered representation is shrunk to
fewer clusters, giving a lesser size of possible combinations of particles to sample from.
Additionally, even with larger clusters, the same problem might occur. Or, by arbitrarily
decoupling the clusters, we introduce independence between the state variables that might
not exist in the actual system. Although this would be possible in theory, it would not be
straightforward to design such a disjoint partition in an environment that contains state
variables that are not assigned to a particular agent. Additionally, inter-dependencies
between state variables over time are ignored. This might result in the construction of
complete particles that do not accurately reflect the posterior distribution as there are
no variables defined for the factored particles to ’agree’ on. Finally, it does not adhere to
the decomposition as given by the CG.

5.2 Locality-based filtering
To increase the scalability of the filter and decrease the chance of deprivation of the
particle filter in large observation spaces, we introduce a general filtering approach in-
dependent of the online planning algorithm. This method is applicable to both factored
variants of POMCP (Sect. 4.2) as well as PFT (introduced in Sect. 4.3.2).

Our method relies on the following assumption:

Assumption 2 (Individual Observation Model). Given an MPOMDP M with observa-
tion model O, the observation model decomposes into individual observation probability
functions Oi : S × A → ∆({Ωi}) for each agent i ∈ I. Individual observations prob-
abilities are conditionally independent, given the successor state and the previous joint
action. Therefore, we can rewrite the observation function as the product of individual
observation probabilities:

O(o⃗ | s′, a⃗) =
∏
i∈I
Oi(oi | s′, a⃗). (5.2)

Note that this differs from the assumption in Messias et al. (2013), where they assume
the local observation for each agent oi ≡ o⃗ is synonymous with the joint observation.

We exploit the structure of a coordination graph CG = (V , E) in the following way.
For every component e ∈ E , we introduce a separate particle filter with Ke particles.1 We
choose Ke to be a number smaller than the original size K, such that K = ∑

e Ke. We
distinguish an unweighted Monte Carlo filter as in POMCP and a bootstrapped weighted
particle filter (with SIR). Given Assumption 2, we update the particle filters for the filters
by the local part of the observation space o⃗e ∈ ×i∈eΩi. We can retrieve the factored
observation o⃗e from the joint observation o⃗ by retrieving the individual observations oi, oj

for each agent i, j ∈ e.
Both the real environment observation as well as the sampled observation can be

mapped to its factored version. Then, we can change the filtering procedure to be based
1Amato and Oliehoek (2015) mention the use of separate particle filters for each component in the

factored trees pseudo-code in their appendix but do not give details in the main paper.

41

on the local component observation space of the corresponding component e for particle
filter be. We distinguish the weighted and unweighted cases:

• For a weighted filter be = {(si, wi)}Ke
i=1, we compute the new importance sampling

weight w′
i for particle si by w′

i ∝ w′
iOe(o⃗e | s′, a⃗), whereOe(o⃗e | s′, a⃗) ≡ ∏

i∈eOi(oi | s′, a⃗),
and oi ∈ Ωi.

• For the unweighted filter, be = {(si)}Ke
i=1, we reject based on the local part of the

observation b̃e = {s′
i : o⃗e = o⃗e,i}. In practice, the rejection sampling algorithm in

Sect. 3.2.1 is adjusted to reject only based on the elements oi, oj of the observation
o⃗ associated with the agents i, j ∈ e in the edge.

With the combination of these locally biased particle filters, we can build an estimate
of the belief posterior while requiring fewer particles on average. We analyse what this
means in terms of the estimator of the belief in the subsequent subsection.

Since we run multiple particle filters in parallel, we must decide which filter to sample
from at every simulation iteration. In the unweighted case, we use the naive approach
of sampling from the filters with uniform probability. With the weighted filter, we can
acquire more information to base our choice of filter to sample from. We use the likelihood
of the weighted update as a statistic for the quality of the belief approximation (Katt
et al., 2019). Intuitively, we sample more often from higher-quality filters. More precisely,
we give filters that contain particles with a higher probability of generating the true
observation a higher chance of getting sampled.

Given the likelihood of a belief update Lt at time t, we can sample a state s from
a set {be | e ∈ E} consisting of |E| particle filters b maintained during an episode with
probability proportional to the likelihood of the individual particle filters:

s ∼ be w.p. L(be)∑
e′∈E L(be)

. (5.3)

Root sampling in Eq. (5.3) would occur in a slightly adapted version of Algorithm 2,
where the state is sampled from the collection of particle filters. The general update
procedure of multiple weighted particle filters is given in Sect. 5.2.

Algorithm 11 Locality-based multiple particle filters update using the SIR procedure.
1: procedure UpdatePF({⟨be,Le⟩ | e ∈ E}, a⃗, {o⃗e | e ∈ E}, τ)
2: for e ∈ E do
3: b′

e,L′
e ← SIR(a, oe, be,Le,Oe, T , τ) ▷ Algorithm 6

4: end for
5: return {⟨b′

e,L′
e⟩ | e ∈ E}

6: end procedure

5.2.1 Multiple Estimators
In the previous, we introduced multiple particle filters conditioned on a subset of the
observation space. Although not explicitly, our approach shares characteristics with
methods that maintain an estimate of the posterior belief distribution by a combina-
tion of multiple estimators. We will consider the weighted variant in more detail here.

42

We essentially define the proposal distribution Q as a mixture distribution of M proposal
distributions Qα = {⟨Qi, αi⟩}M

i=1 (Owen, 2013), where Qi are individual proposal distri-
butions and αi the (uniform) weights. In our case, M ≡ |E|, and Qe corresponds to the
proposal distribution that contains the likelihood of observing the factored observation
p(o⃗e | s, a⃗) instead of the full likelihood p(o⃗ | s, a⃗).

Multiple importance sampling. Elvira and Martino (2021) define a general frame-
work of multiple importance sampling (MIS), we summarise them for analysing our fil-
tering approach here. They define MIS as a method of taking a predefined Km from
M proposal distributions. Similarly, mixture importance sampling is a subset of MIS,
where Km is a random variable. A valid mixing scheme for simulating N samples from
a mixture must satisfy Φ(x) = 1

N

∑
iQi. Consider the case where, n = 1, . . . , N and we

sample once per proposal distribution, xn ∼ Qn(x). Then, consider the following two
weighting schemes:

• Option 1. Standard MIS:

wn =
P(xn)
Qn(xn) (5.4)

• Option 2. Deterministic MIS:

wn =
P(xn)
Φ(xn) =

P(xn)
1
N

∑N
i=1Qi(xn)

(5.5)

Option 2 generally has less variance than Option 1 (Elvira et al., 2019) but requires
more proposal evaluations, which can become a computational bottleneck. Our approach
is more in line with Option 1, as we do not consider the other densities when evaluating
the local condition probability.

An ensemble approach. Our method does not exactly adhere to the formalisations of
MIS. Essentially, our method consists of the approximation of the posterior distribution by
a set of importance sampling estimators. The target distributions are then the filtering
densities p(xt |xt−1, ye

t), where ye ≡ oe, and the proposal distribution is the transition
dynamics function, which is the same across the estimators. The importance weights are
then computed as the local observation conditional wt ∝ p(xt | ye

t) as given by the relative

importance between the target and proposal distribution ≈
p(xt |xt−1, ye

t)
p(xt |xt−1)

.

5.2.2 Limitations
Unfortunately, we did not succeed in finding an appropriate framework within the field
of particle filtering and importance sampling to capture our approach. One of the big
limitations of this method is we do not have any guarantees on the quality of the belief
approximation. Additionally, there are some inherent limitations to introducing multiple
locally biased particle filters. Because each filter is only based on information contained
locally, it might be impossible to represent a joint belief that requires the knowledge
of all agents, even when we sample states from all filters. One solution would be to
combine the locally biased beliefs into a joint belief, which is known as the assimilation
of beliefs, generally considered a difficult topic. However, earlier work on factored beliefs

43

in MPOMDPs has shown its effectiveness in approximating the global value function
Messias et al. (2011).

Unfortunately, we must conclude that we cannot alleviate these concerns. But, in the
context of our experimental evaluation, we find that the method works well in practice,
achieving better results than the existing method of Sect. 5.1 while being less computa-
tionally expensive.

44

Chapter 6

Action Selection

Action selection in a coordination graph involves finding the maximising action over the
set of conditional payoff functions.

We are tasked to find the joint optimal action a⃗∗ by proxy via our MoE estimate Q̂
of the true Q-function. Thus, we try to find a deemed maximal action a⃗#:

a⃗# = arg max
a⃗

Q̂(⃗a). (6.1)

We can decompose the global maximisation in terms of consequent local maximisation
(Van Der Pol, 2016) by making use of the factored Q-functions from Sect. 4.1 and the
distributive laws of maximisation and summation (Bishop, 2006):

max
a⃗

Q̂(⃗a) = max
a1
· · ·max

an
Q̂(⃗a)

= max
a1
· · ·max

an

[∑
e∈E

Q̂e(⃗ae)
]

= max
a1
· · ·max

an

[
Q̂e1 (⃗a1) + · · ·+ Q̂e|E| (⃗a|E|)

]
= max

a1

[
max

a2

[
Q̂e1 (⃗a1) +

[
· · ·max

an
Q̂e|E| (⃗a|E|)

]]]
.

(6.2)

In the final representation of Eq. (6.2), the ordering, which can be permuted, de-
termines the computational efficiency of the procedure. We compute this maximisation
efficiently with algorithms adapted from the graphical inference literature. In the follow-
ing section, we will disseminate two of such algorithms and introduce a technique that
can alleviate the computational complexity by introducing a bounded error.

6.1 Algorithms
Given that we have a factorisation of the action space as induced by the coordination
graph, we have to pick the best UCB1 action at every simulation step during the forward
search with an inference algorithm. This introduces overhead during the search.

6.1.1 Exact Algorithm
variable elimination (VE) is an exact algorithm for inference in probabilistic graphical
models. The global best action is computed by eliminating agents from the graph one
by one, collecting their optimal conditioned action, and adding the resulting conditional

45

Algorithm 12 VE-based exact action selection algorithm for CGs.
Require: CG = (V , E), set of edge Q-functions F = {Qe | e ∈ E}, elimination order κ

1: procedure VariableElimination
2: for i ∈ V with loop-order κ do
3: Φ← all f ∈ F for which Ai ⊂ Scope[f]
4: Set g = maxai

∑
f∈Φ f , with Scope[g] = ⋃

f∈Φ Scope[f]− {ai}
5: F ← F ∪ {g}
6: end for
7: K ← ∅
8: for j ∈ V with reverse loop-order κ do
9: a⃗#

j ← argmaxaj
F subject to previous assignments ∀k∈K : a⃗k of a⃗

10: K ← K ∪ {j}
11: end for
12: return a⃗#

13: end procedure

payoff to the graph as new edges until the last agent computes the action that maximises
the final conditional strategy. Finally, a reverse pass decides the optimal action for all
eliminated agents based on the fixed actions of other agents.

More formally, the algorithm maintains a set F of functions, with F = {Qe | e ∈ E}
initially, where Qe is the component value-function indexed by the edge e ∈ E in the
graph CG = (V , E). Following Guestrin et al. (2001), the algorithm then proceeds as:

1. Pick any non-eliminated agent i ∈ V − X (X = ∅ initially).

2. Aggregate all f ∈ F for which ai ∈ Scope[f] into Φ.

3. Add function g = maxai

∑
f∈Φ f to F , with Scope[g] = ⋃

f∈Φ Scope[f]− {ai}.

4. Add agent i to the set of eliminated agents X ∪ {i}.

The maximal action is then recovered by a reverse pass, using reverse ordering, pick-
ing the maximal action for every action over the set of functions. Pseudo-code for the
procedure is given in Algorithm 12.

Elimination order. Even though the optimal action is found regardless of elimination
order, the complexity of the procedure is heavily dependent on this ordering. Finding
the optimal ordering is NP-complete (Kok and Vlassis, 2005), but good heuristics, e.g.,
sorting by degree, exist.

In order to find a sufficient ordering within a reasonable time, we employ an order
induced by sorting by degree.

The degree deg : V → N is a function that maps vertex i ∈ V to the local degree of
vertex i in the graph CG = (V , E), representing the number of edges that touch vertex i,
with ∑

i∈V deg(i) = 2 · |E|. We then define κ as an ordering that sorts elements v ∈ V by
degree in ascending order.

46

6.1.2 Anytime Algorithm
The max-plus (MP) algorithm for computing the maximum a posteriori (MAP) config-
uration is analogous to belief propagation in graphical models (Pearl, 1989). Finding
the MAP configuration is equivalent to finding the optimal joint action in a CG (Vlassis
et al., 2004). Messages are sent between nodes in an iterative fashion. The messages µij

represent the running updates of the locally optimised payoff functions between agent i
and j over the edges of the CG (Kok and Vlassis, 2005). Messages are computed by the
following equation:

µij(aj) = max
ai

Qij(ai, aj) +
∑

k∈Γ(i)\j

µki(ai)
 , (6.3)

where Γ(i) denotes the neighbours of i in the graph. In practice, the messages are
normalised after the maximisation by subtracting a normalisation constant,

cij = 1
|Aj|

∑
aj∈Aj

µij(aj),

from Eq. (6.3) to prevent the messages from continuously increasing, which is especially
prevalent in graphs with cycles (Wainwright et al., 2004). Messages are passed until
they converge, or an anytime signal is received. The MP algorithm is anytime since
messages are approximations of the exact value, meaning performance and computational
efficiency can be interchanged. Furthermore, messages need only to sum over the received
messages from its neighbours defined over the actions of the receiving instance instead
of enumerating all possible action combinations as in VE. Additionally, MP requires no
change in the graph topology as opposed to the eliminations of VE. Pearl (1989) proves
that MP converges in finitely many iterations in acyclic graphs and Wainwright et al.
(2005) prove the existence of fixed points for MAP in general graphs by making use of the
spanning tree properties of the graph. The convergence speed of MP can be increased by
using the same ordering of message passing as the elimination ordering heuristic of VE
(Loeliger, 2004), such as the ordering by degree described in Sect. 6.1.1. In optimal cases
with the right ordering, MP can converge in just one forward and backward pass, giving
the same result as the exact counterpart. Kok and Vlassis (2005) study the performance
of MP and VE in a static CG action selection without confounding influences. We refer to
their extensive empirical analysis for an objective comparison of the selection procedures.

After reaching convergence or the computational budget, we find the maximal action
by selecting the individual best actions locally:

a#
i = argmax

ai

∑
j∈Γ(i)

µji(ai). (6.4)

Finally, we note that Max-Plus can be computed in a distributed manner (Kok and
Vlassis, 2005), in theory enabling the use of the combined computational power of the
agents.

6.1.3 Eliminating Cycles
A large factor in deciding the run-time complexity of both classes of algorithms is the
topology of the coordination graph. In MP, the convergence guarantee does not hold in

47

Algorithm 13 MP-based anytime action selection algorithm for CGs.
Require: G = (V , E), Qij for (i, j) ∼ e ∈ E , q = −∞, Message order κ

1: procedure MaxPlus(c, M)
2: µ0

ij(aj) = 0 for (i, j) ∈ E , aj ∈ Aj

3: for t← 1 to M do
4: for i ∈ V with order κ do
5: for j ∈ Γ(i) do
6: Compute µij using Eq. (6.3)
7: µt

ij(aj)← µt−1
ij (aj)− 1

|Aj |
∑

j µij(aj)
8: end for
9: Compute ai using Eq. (6.4) and set a⃗i ← ai

10: end for
11: if u(⃗a) > q then ▷ Anytime extension.
12: a⃗∗ ← a⃗
13: q ← u(⃗a)
14: end if
15: if ||µt

ij − µt−1
ij ||1 ≈ 0 then ▷ Convergence heuristic.

16: break
17: end if
18: end for
19: return a⃗∗

20: end procedure

graphs with cycles. Thus, the algorithm requires an unknown number of iterations before
converging to a—possibly sub-optimal—value. In VE, a graph with cycles incurs a large
induced width of the elimination tree during the execution of the algorithm. We build
a spanning tree for a CG to eliminate cycles. To compute a maximum spanning tree
(MST), e.g., with Kruskal’s algorithm (Cormen et al., 2009), we require edge weights.
We find these by taking the maximum value of a local Q-function corresponding to an
edge e ∈ E as the sum of the maximum value with respect to both agents in the edge
(Rogers et al., 2011):

we = max
ai

[
max

aj
Qe(ai)−min

aj
Qe(ai)

]
+ max

aj

[
max

ai
Qe(aj)−min

ai
Qe(aj)

]
, (6.5)

where i, j ∈ e and ai ∈ Ai, aj ∈ Aj. Note that in practice, we negate the weights we as we
are looking to find the MST from a minimum spanning tree algorithm. We compute the
spanning tree before action selection from the approximate Q-values at that time during
the search. Although this introduces an approximation error into the value recovered, this
error is bounded by the sum of the edges removed by the spanning tree. More formally,
if we define the maximum spanning tree for the graph CG = (V , E) as MST = (V , Ê)
with Ê ⊆ E , and we define the set of edges not in the tree as R ≜ E \ Ê the introduced
error EMST is bounded by EMST ≤

∑
e∈R we. Despite this error, the cycle elimination

makes the action selection procedure tractable in problems with many agents.

48

Algorithm 14 coordination graph (CG) maximum spanning tree (MST)
Require: Coordination Graph CG = (V , E), Edge Q-functions Qe for e ∈ E

1: procedure CGSpanningTree
2: Let W be an array to hold the edge weights for each e ∈ E initialised to 0.
3: for e ∈ E do
4: wij ← maxai

[
maxaj

Qe(ai)−minaj
Qe(ai)

]
5: wji ← maxaj

[maxai
Qe(aj)−minai

Qe(aj)]
6: We ← −(wij + wji) ▷ Negative weights.
7: end for
8: return Kruskal(CG,W)
9: end procedure

6.2 Comparison
In order to determine which algorithm best suits what settings, we relate some charac-
teristics of both algorithms here.

6.2.1 Computational Complexity
Variable Elimination has a run-time complexity of O(|E| · |Amax|w) Amato and Oliehoek
(2015), where |E| is the number of agents, |Amax| is the cardinality of the largest action-set,
and w is the induced width of the coordination graph. The induced width is synonymous
to the largest clique to be computed during node elimination.

Max-Plus has a run-time complexity of O(|V| · |E|) that is linear in the number of
nodes and edges in the graph. Thus, the run-time of Max-Plus is polynomial in the size
of the graph.

VE can be the better choice in settings where the action and observation spaces of
multiple connected agents can be merged in a hyper-graph. In terms of scalability, VE
is a very efficient approach to finding the exact maximal action in loosely connected or
sparse graphs, but in comparison to MP it fails to scale well to coordination schemes with
a large number of agents and interactions due to its exponential worst-case complexity.
However, MP can also suffer from dense graphs in practice. However, MP is an anytime
algorithm, which makes it sufficient for settings in which the computational budget is tight
or where a call to VE might cost too much time. In the factored algorithms variants of
Sect. 4.2, a large part that decides the number of simulation calls in the case of a time-
constrained computational budget depends on the time spent in these graphical action
selection procedures.

6.2.2 Exploration
As we saw in Sect. 3.1.1, UCT underlies the POMCP algorithm, which in turn relies on the
UCB1 value of actions to decide on the balance between exploration and exploitation. The
pseudo-code of Algorithm 12 and 13 does not contain these exploration bonuses explicitly.
For VE, we implement the algorithm as defined in the paragraph above. We proceed
similarly to its introduction to UCB1 action selection by Amato and Oliehoek (2015)
and add the exploration bonus component-wise during the eliminations of the nodes of
the graph as in Eq. (3.2). For MP, we follow the edge-wise exploration methodology

49

as coined by Choudhury et al. (2022). Similarly, edge exploration is added only after
the final iteration of message passing in order to avoid divergent behaviour in cyclic
interaction graphs. Instead of state-based statistics in the MMDP setting, we maintain
history-based statistics in the belief tree. Note that we ignore the individual node-level
utility and exploration bonus for generalisation purposes, as we do not assume a factored
or local reward vector and solely rely on the global joint reward signal of the simulator.
If we use factored trees, we can factorise the joint-action exploration bonus, similar to
edge-wise exploration, by using the factored statistics of the individual trees. The formula
in Eq. (6.3) is augmented with the exploration bonus UCB(0, N (⃗he), N (⃗he, a⃗e)) during a
final additional message passing round.

50

Chapter 7

Experimental Evaluation

As our algorithms compute solutions online, we require a thorough empirical evaluation
in order to adequately assess their performance. This chapter presents a description
of the benchmarks and the details of the computational infrastructure employed in the
empirical evaluation. We evaluate our methods on a set of four benchmarks and compare
average performance across multiple episodes with random initialisation. The following
section contains our analysis and interpretation of the results of this procedure.

7.1 Benchmark descriptions
Here, we outline the descriptions of the four benchmarks.

7.1.1 Firefighting in a Line
In a similar fashion to the introduction of the factored POMCP algorithms (Amato and
Oliehoek, 2015), we adopt the FireFightingGraph (FFG) environment (Oliehoek
et al., 2008). Agents are standing in a line, and houses are located to the left and right
of each agent. Given n agents, this gives nh = n + 1 houses in total. A problem instance
with three agents i, j, k, thus giving four houses, is drawn in Fig. 7.1. This drawing
includes the CG, which in this case, consists of two edges. Each house has an associated
fire level in [0, nf), with nf = 3, which indicates the severity of the fire. A state is
comprised of the fire levels of each house, giving a state space of |S| = nnh

f . Fire spreads
more quickly between adjacent burning houses. The agents can move to either the left
or right house in a deterministic fashion and receive a binary “flames” observation that
indicates noisily whether the house the agent visited was burning.1 The state, action
|A| = 2n, and observation space |Ω| = 2n grow exponentially with the number of agents.
Unless specified otherwise, we limit the maximum number of steps in the environment to
H = 10.

7.1.2 System Administration
We follow Choudhury et al. (2022) in their definition of SysAdmin as an MMDP. The
environment consists of a set of computers connected in a graph, where each vertex
represents a computer. Each individual computer i has two state variables; status Si ∈

1Note that Amato and Oliehoek (2015) introduced a third non-specified action, which we leave out.

51

Figure 7.1: FFG with n = 3 agents i, j, k and consequently nh = n + 1 = 4 houses..
Agents are connected in a line formation, resulting in two expert Q-function predictions,
indicated by Qij, and Qjk. These could also be indicated by the edge indices Qe1 and
Qe2 , respectively.

{GOOD, FAULTY, DEAD} and load Li ∈ {IDLE, LOADED, SUCCESS}. Dead machines increase
the chance of their neighbouring machines going faulty. Actions for each agent are either
a NOOP or a reboot. A reboot sets the status to GOOD, but any progress in loading is
lost. The system receives a reward of +1 if a process completes successfully. Although
the environment is an MMDP, we run our algorithms on this benchmark as if it were an
MPOMDP. We define the initial belief over all possible initial states and perform particle
filtering as in an MPOMDP, albeit with unweighted particle filters. Unless specified
otherwise, we limit the maximum number of steps in the environment to H = 50. In
SysAdmin, there is no way for an episode to end prematurely.

7.1.3 Rocksampling
RockSample (Smith and Simmons, 2004) is a traditional benchmark for online plan-
ners (Silver and Veness, 2010). Similarly to Cai et al. (2021), we introduce multi-agent
RockSample (MARS) by increasing the number of agents that need to be controlled.
Particularly, we model the problem as an MPOMDP. MARS environments are defined by
their size m, the number of agents n, and the number of rocks k. We write MARS(m, k)
to indicate the MARS environment with size m and k rocks. The agents are spread out
on the left-most x-coordinate on the m×m grid and are tasked with sampling rocks be-
fore leaving the area on the right-most x-coordinate. The action space is |A| = (5 + k)n,
where k is the number rock sample actions. The observation space |Ω| = 3n is relatively
small. The agents receive a reward of ±10 depending on whether the rock they sampled
was good and +10 upon leaving the area on the right side. During the search, there
is a −100 penalty for leaving the grid at any other side (i.e., west, north, or south) of
the map. This −100 penalty can be found in the code of POMCP for the single-agent
RockSample problem (Silver and Veness, 2010) and in HyP-DESPOT for MARS (Cai

52

.. >

.. $$ >

.. $$ >

.. $$ >
$$ $$ >
.. $$ XX >
.. .. XX >
.. >
R2 >
R0 >
.. $$ $$ XX >
R3 $$ >
.. $$ >
.. >
R1 $$ >

Figure 7.2: Random initialisation of MARS(15, 15) with n = 4 agents, which are indi-
cated with Rn (n ∈ {0, 1, 2, 3}). Greater-than signs (>) indicate the points in the grid
the agents can leave the area. The symbol pairs $$’s and XX’s indicate good and bad
rocks, respectively. Unsurprisingly, the double dots (..) indicate empty grid points.

et al., 2021), but it is not mentioned in either of their benchmark descriptions or in the
original introduction of RockSample (Smith and Simmons, 2004). We do not inflict
this penalty during episode execution to ensure results remain legible. Unless specified
otherwise, we limit the maximum number of steps in the environment to H = 40. We
present an ASCII-based render of a random initialisation in Fig. 7.2.

7.1.4 Capturing a Target
Inspired by Xiao et al. (2021), we introduce CaptureTarget (CT) as an MPOMDP
problem. n agents move around and try to capture a single target in a m×m grid world.
States consist of the (x, y) coordinates of each agent and the target, giving a state space of
S = m2n+2. The target moves to the position which is the furthest away from all agents.
Unlike the toroidal world of Xiao et al. (2021), our grid is confined by walls. Rewards are
sparse; +1 if one or more agents capture the target and 0 otherwise. The episode ends if
the target is captured or the maximum horizon is reached. Observations are binary and
indicate whether the agent can ‘see’ the target either horizontally or vertically in the grid.
However, they are very noisy, as there is a 30% chance of the target flickering, i.e., it can’t
be seen, and a 10% sensor measurement imprecision for every agent. Note that we report
the averaged undiscounted rewards over a set of episodes, which can be summarised as
a capture rate, i.e., the percentage of episodes in which the target was captured. Unless
specified otherwise, we limit the maximum number of steps in the environment to H = 50.
A static render of the environment is depicted in Fig. 7.3.

7.2 Set-up
All POMCP and PFT algorithm variants are based on the same Python 3 code, available
in this Gitlab repository. We used the DESPOT and MARS C++ implementation from

53

https://gitlab.science.ru.nl/mgalesloot/mpomcp

Figure 7.3: Random initialisation of CaptureTarget(12× 12) with n = 4 agents. The
target is indicated by the red cross and moves away from the closest agents (Xiao et al.,
2021). Both the agents and the target can take steps in any of the four Manhattan-based
directions.

54

the code of HyP-DESPOT (Cai et al., 2021). All code runs only on a single core of an
Intel(R) Core(TM) i9-10980XE CPU @ 3.00GHz and 256 GB RAM (8 x 32GB DDR4-
3200). Our Python code ran episodes in parallel with 34 threads such that each episode
had access to 256/34 ≈ 7.5GB of RAM. The DESPOT experiments ran single-threaded.
All results reported are averaged cumulative discounted rewards over 100 episodes and
are reported with 95% confidence intervals. An OOR entry in a table indicates that the
algorithm ran out of resources, i.e., time or memory. We did not run an extensive hyper-
parameter optimisation for any algorithm. As such, the discount factor γ and UCB1
exploration constant c were set depending on the environment.

Particles. In chapter 5, we introduced multiple particle filters in parallel. In order to
maintain equal comparison in the evaluation, we set the number of particles in the flat
counters K to equal the sum of particles ∑

e Ke in the factored filters. For example, if
we have three factors with Ke = 100, then the flat counterpart has K = 300. In CT and
MARS, we had 100 particles per filter. In FFG, the base number of particles was set
to 20. If the particle filter belief is deprived at any point in time during the episode, the
policy defaults to a random policy. For PFT, the particle number C was fixed to 20.

Graphs. In line with Castellini et al. (2021), this thesis studies large problems without
natural structure in the experimental evaluation, such as MARS and CaptureTarget,
without a natural graph structure. We aim to show that an arbitrary CG can act as a
heuristic to make these problems tractable. However, choosing such a heuristic structure
might be difficult. This problem has been considered in the literature, e.g., by learning
the graph (Kok and Vlassis, 2006b). In our experiments, we chose the decomposition
based on the objective. The “line” composition is a tree-like decomposition inspired
by the FireFightingGraph domain. The “team” composition increases locality by
disconnecting teams of agents from the remaining agents.

55

https://github.com/marisgg/HyP-DESPOT

7.3 Results
This section contains the results and analysis thereof from the experimental evaluation
described in the previous part of the chapter. Our experimental evaluation is, apart from
studying numerous algorithm variants, primarily aimed at evaluating our contributions,
which we summarise one by one below:

• We extend the PFT algorithm to MPOMDPs and introduce FS-PFT and FT-PFT
as its factored extensions.

• We consider the notion of progressive widening on the observation space of the
POMCP algorithm with factored UCB1 statistics (FS-POMCPOW).

• We consider weighted particle filtering for (factored) POMCP.

• We introduce a general method for scaling both weighted and unweighted filtering
in a coordination graph setting. We employ this method on FT-POMCP and FT-
PFT.

• We consider anytime action selection for factored POMCP.

• We introduce a method, namely MST, to scale graphical action selection algorithms
in coordination graphs with many nodes and edges.

FT factored-trees constructs a separate tree per factor in the CG
FS factored-statistics retains UCB1 statistics per factor in the CG
PFT sparse particle filter tree operates on the particle-belief MMDP states
WPF weighted particle filter weighted particle filtering via SIR.
FPF factored particle filtering Method by Ng et al. (2002) we adopted for MPOMDPs
MP max-plus anytime action selection via message passing
VE variable elimination exact action selection via node elimination
MST maximum spanning tree algorithm that extracts trees from cyclic graphs

Table 7.1: Summary of the acronyms commonly used in the experimental evaluation. For
a full list, we refer to the glossary at the end of this thesis.

7.3.1 Overview
In Table 7.1, we refresh some of the acronyms that are related to our contributions
summarised above. Considering that this thesis introduced numerous algorithm variants
and extensions related to online planning in MPOMDP, we supply an overview of the
algorithm variants under test in Table 7.2. We go over them shortly here. POMCP
(Silver and Veness, 2010) was introduced in Sect. 3.1.2, we also consider a version with
a weighted particle filter. They serve as a baseline in our experiments. In Sect. 4.2.1,
we extend POMCPOW (Sunberg and Kochenderfer, 2018) to the coordination graph
setting, resulting in FS-POMCPOW. Factored POMCP (Amato and Oliehoek, 2015) was
introduced in Sect. 4.2. FS-POMCP-VE and FT-POMCP-VE are the variants that were
originally introduced, it is unclear if they were implemented with factored or multiple
particle filters. We test them with our weighted and unweighted locality-based filter

56

and with the anytime MP algorithm for action selection. PFT (Lim et al., 2020) was
introduced in Sect. 4.3.1. We extended it to Coordinated PFT in Sect. 4.3.2.

Variants WPF Locality-Based Filtering Action Selection
POMCP Flat Yes/No No N.A.
POMCPOW Flat/FS Yes No N.A.
PFT Flat Yes No N.A.
Factored POMCP FS/FT Yes/No Only FT-POMCP VE/MP ± MST
Coordinated PFT FS/FT Yes Only FT-PFT VE/MP ± MST

Table 7.2: Overview of the algorithm variants that we consider in the experimental
evaluation. “Yes/No” implies that the algorithm can be implemented with and without
this method, similarly, ”VE/MP” implies it can run with both. For simplicity, we only
consider locality-based filtering in variants with factored trees. Variants in bold are either
our improvements or variants considered for the first time by us.

7.3.2 Analysis
We empirically evaluate the effectiveness of the proposed solutions on benchmarks with
many agents. The key question is Q1:

Does the use of CGs accelerate online planners for MPOMDPs?

We evaluate this on two types of benchmarks: Q1a: on benchmarks with a natu-
ral coordination graph (FFG and SysAdmin) and on Q1b: on artificially chosen CGs
(MARS and CT). Furthermore, we are interested in Q2: the sensitivity of the perfor-
mance with respect to the number of particles, Q3: the sensitivity of the performance
with respect to the action selection algorithm, and Q4: the performance comparison of
PFT and POMCP variants.

Q1a: the factored algorithms out-scale flattened approaches. We can see in
Fig. 7.6a for FFG that the factored approaches out-scale their flat counterparts, even
with fewer simulations. In the relatively simple setting with four agents, all algorithms
approach the value achieved by a full-width solver with 30 minutes of offline solving
time. However, if the number of agents increases, only the factored approach manages
to achieve good results. This shows clearly that the factored-value (FS/FT) variants of
POMCP and PFT outperform their flat counterparts. This can be explained by the fact
that the domain has a structure that has a nearly factored Q-function, such that the MoE
in Eq. (4.2) approximately holds (see Theorem 4.1.1 and Amato and Oliehoek (2015)).

To study the best-performing algorithms in FFG, ours, and FT-POMCP, we plot
the comparison in the 64-agent setting in more detail in Fig. 7.4. Our algorithms (solid)
perform just as well or better, but there is a slight overlap in confidence intervals between
our best and FT-POMCP (dotted).

For MARS, on the small map in Table 7.3a, we see similar results for five agents.
For three agents, regular POMCP works well, and for four agents POMCP(OW) with
weighted particle filtering achieves superior performance within the fifteen seconds time
frame. DESPOT achieves a good result in the larger map with three agents and the

57

101 102 103

Number of Simulations

−95

−90

−85

−80

−75

−70

−65

C
um

ul
at

iv
e

D
isc

ou
nt

ed
R

ew
ar

d

64 Agents, |A| = |Ω| = 1.84467e + 19

FS-PFT-WPF
FT-PFT-WPF
FS-POMCP-WPF
FT-POMCP
FT-POMCP-WPF

Figure 7.4: FireFightingGraph (H = 10, c = 5, γ = 0.99), like Fig. 7.6a, zoomed on
the 64 agent setting for various numbers of allowed simulations. The x-axis is logarithmic.

smaller map with four agents. For the latter result, the algorithm exceeded the allowed
time, requiring 20 seconds on average. Overall, DESPOT performs well but struggles with
the computational budget and often runs out of resources (time or memory). Our factored
approaches were able to scale well to multiple agents but achieved worse performance on
average for fewer agents.

Q1b: the CG-induced factorisation can be employed as a heuristic in problems
without natural factorisation. Not all benchmarks contain Q-functions that factor
as well as in the FFG benchmark. In these cases, one may still assume a CG as a chosen
heuristic to make the problem tractable for online planning algorithms. CT and MARS
are such benchmarks. With n agents, the line connects all agents in a pairwise line,
resulting in n− 1 factors. The teams formation connects two agents in a factor, giving n

2
factors. From our results in Table 7.3 to 7.5, we conclude that the coordination graph can
act as a heuristic to make unfactored problems with many agents tractable. The chosen
graph topology influences the performance, as is visible in the results of CT (Table 7.4).
Here, the team coordination functions much better, as it allows the two agents to act
independently from the other two in their attempt to capture the target. In MARS, we
see less difference between the graph topologies in terms of performance. However, we do
have a worse performance when introducing factorisation as compared to flat POMCP.

Q2: the number of particles has a marginal effect on the performance. The
number of particles has a small effect on the performance of the algorithms, which further
diminishes when using our technique from Sect. 5.2. For example, in FFG with 16 agents,
flat POMCP enjoys ≈ 6% increase in performance between K = 150 and K = 1500
particles, which is within the confidence interval. FT-POMCP-VE reaches comparable
performance with both Ke = 10 particles and Ke = 100 particles in each filter. In
Fig. 7.5, we plot the performance on FFG with 4, 8, and 16 agents with respect to
various numbers of particles in the filters on the x-axis. We compare the performance of

58

(a) Small map: MARS(m = 7, k = 8), γ = 0.95, c = 1.25

Environment MARS(7, 8)
Nr. of Agents 3 4 5 6
FS-PFT-VE 3.9± 1.5 −3.9± 1.6 −6.9± 1.7 −9.4± 2.0
FS-POMCP-MP-WPF 0.3± 1.2 0.9± 1.8 −1.2± 2.6 −1.8± 2.8
FS-POMCP-VE 0.7± 2.0 2.8± 3.0 2.8± 2.8 −0.8± 3.8
FS-POMCP-VE-WPF −1.0± 1.1 0.8± 1.3 2.7± 1.2 2.1± 1.4
FS-POMCPOW-MP −0.2± 1.2 0.5± 1.0 0.7± 2.3 0.0± 2.7
FS-POMCPOW-VE 1.2± 1.1 4.5± 1.6 1.7± 1.3 8.9± 0.8
FT-PFT-VE-WPF 0.4± 1.6 0.2± 1.4 1.0± 1.6 −11.5± 2.5
FT-POMCP-MP 2.5± 1.8 0.4± 1.1 1.8± 1.9 −0.4± 3.6
FT-POMCP-MP-WPF 1.7± 1.1 1.7± 0.7 −0.1± 2.1 1.0± 0.8
FT-POMCP-VE 5.8± 1.1 3.0± 1.3 2.7± 1.2 1.1± 1.2
FT-POMCP-VE-WPF 1.8± 1.1 2.9± 1.1 −1.3± 1.3 3.4± 1.5
DESPOT OOR OOR OOR OOR
PFT −6.0± 2.5 −9.1± 2.8 −0.0± 0.7 OOR
POMCP 12.8± 2.8 7.5± 3.7 −4.6± 2.3 OOR
POMCP-WPF 24.6± 2.0 6.4± 1.9 −1.9± 1.5 OOR
POMCPOW 14.7± 1.9 11.1± 1.8 −0.2± 0.6 OOR

(b) Medium map: MARS(11, 11), γ = 0.95, c = 1.25

Environment MARS(11, 11)
Nr. of Agents 3 4 5 6
FS-POMCP-MP-WPF 0.4± 0.8 −0.2± 0.4 −1.7± 0.7 −0.3± 0.3
FS-POMCP-VE-WPF −1.1± 0.6 1.5± 1.2 −3.7± 1.2 3.9± 1.0
FS-POMCPOW-MP −0.3± 0.7 0.1± 0.3 0.3± 0.9 −1.5± 1.3
FS-POMCPOW-VE 2.2± 0.9 2.1± 1.0 −2.4± 1.2 −2.1± 1.2
FT-POMCP-MP 0.0± 0.9 −0.0± 1.4 −0.0± 0.7 −1.2± 1.2
FT-POMCP-MP-WPF 0.5± 0.4 0.1± 0.2 0.0± 0.2 −0.1± 0.2
FT-POMCP-VE 1.5± 1.0 1.7± 1.3 4.3± 1.1 4.3± 0.9
FT-POMCP-VE-WPF 5.2± 0.9 −3.3± 0.8 −3.6± 0.9 6.8± 1.0
DESPOT OOR OOR OOR OOR
PFT −17.7± 2.2 1.7± 1.6 −0.1± 0.5 OOR
POMCP 17.0± 1.9 −3.6± 2.9 −0.1± 0.2 OOR
POMCP-WPF 15.5± 1.9 8.5± 1.3 0.0± 0.0 OOR
POMCPOW 2.4± 1.0 −0.8± 1.3 −0.0± 0.5 OOR

Table 7.3: MARS experiments with three maps and various numbers of agents. Maximum
time per step is five seconds.

59

101 102 103

−18

−16

−14

−12

−10

−8

4 Agents, |A| = |Ω| = 16

RANDOM
FT-PFT-MP-FPF-WPF
FT-PFT-MP-WPF
FT-POMCP-MP
FT-POMCP-MP-FPF
FT-POMCP-MP-FPF-WPF
FT-POMCP-MP-WPF
POMCP
POMCP-WPF
POMCPOW-WPF

101 102 103

−28

−26

−24

−22

−20

−18

−16

−14

8 Agents, |A| = |Ω| = 256

101 102 103

−45

−40

−35

−30

−25

−20

16 Agents, |A| = |Ω| = 65536

FireFightingGraph (nf = 3, H = 10, c = 5, γ = 0.99)

Number of particles

Cu
m

ul
at

iv
e

D
isc

ou
nt

ed
Re

wa
rd

Figure 7.5: Algorithm performance on FireFightingGraph(H = 10, c = 5, γ =
0.99, nf = 3) with various numbers of particles. This experiment is similar to Fig. 7.6a
but differs in the fact that the logarithmic x-axis shows a varying number of particles in
the particle filters maintained during the episode. All experiments were constrained by a
maximum of either 250 simulations or five seconds of computational budget per search.

60

(c) Large map: MARS(15, 15), γ = 0.95, c = 1.25

Environment MARS(15, 15)
Nr. of Agents 3 4 5 6
FS-PFT-VE −7.1± 1.6 −3.3± 1.0 −0.6± 0.5 −7.6± 1.9
FS-POMCP-MP 0.2± 0.4 0.0± 0.0 0.4± 0.5 −0.2± 0.3
FS-POMCP-VE −3.9± 1.3 0.8± 1.9 −2.5± 3.2 −4.4± 2.3
FS-POMCP-VE-WPF −0.6± 0.6 3.0± 0.8 2.2± 1.1 −3.9± 0.8
FS-POMCPOW-VE 1.9± 0.5 2.1± 1.3 −3.2± 1.1 −2.6± 1.8
FT-PFT-VE −2.5± 1.1 2.0± 1.1 −0.6± 0.6 −10.3± 1.6
FT-POMCP-MP 0.3± 0.9 −0.9± 1.2 1.0± 1.2 −0.9± 0.6
FT-POMCP-MP-WPF 0.8± 0.6 0.0± 0.0 0.6± 0.4 −0.9± 1.7
FT-POMCP-VE 2.3± 0.8 0.6± 0.8 1.1± 0.9 3.6± 0.8
FT-POMCP-VE-WPF −0.6± 0.3 1.1± 1.0 5.6± 1.1 −1.7± 0.6
DESPOT OOR OOR OOR OOR
PFT −2.5± 1.4 0.5± 0.7 −0.1± 0.1 OOR
POMCP 9.1± 1.5 −0.6± 1.6 0.0± 0.0 OOR
POMCP-WPF −14.9± 1.6 −0.0± 0.5 0.0± 0.0 OOR
POMCPOW 4.3± 1.3 −1.3± 1.2 −0.4± 0.5 OOR

Table 7.3: MARS experiments with three maps and various numbers of agents. Maximum
time per step is five seconds.

the flat algorithms to the FT algorithm variants, where the factored algorithms use the
locality-based filtering approach (chapter 5). We run flat algorithms and factored trees in
this comparison to demonstrate the difference in particle filtering methodology. We also
consider the FPF method described in Sect. 5.1. Performance increases marginally for the
flat filters, while the results of the factored filters do not exhibit such an increase. This
increase is less distinguishable in the algorithms with weighted particle filters. Moreover,
our locality-based filters achieve good performance with a small number of particles per
filter. Some of the FPF variants perform equally well. However, this SampleJoin
procedure of this method is much more computationally expensive than our locality-
based filtering solution.

Nr. of agents 3 4 5 6
POMCP 0.08± 0.05 0.05± 0.04 0.08± 0.05 0.19± 0.08
POMCP-WPF 0.28± 0.09 0.62± 0.10 0.69± 0.09 0.54± 0.10
FT-POMCP-MP 0.18± 0.08 0.69± 0.09 0.18± 0.08 0.78± 0.08
FT-POMCP-MP-WPF 0.06± 0.05 0.32± 0.09 0.05± 0.04 0.44± 0.10
FT-POMCP-VE 0.26± 0.09 0.36± 0.09 0.33± 0.09 0.51± 0.10
FT-POMCP-VE-WPF 0.15± 0.07 0.41± 0.10 0.20± 0.08 0.55± 0.10

Table 7.4: CaptureTarget(12×12). Maximum time per step of fifteen seconds. We only
show results above a certain threshold, full table is located in the appendix.

61

Q3: the action selection algorithm noticeably influences performance In CT
(Table 7.4) and MARS (Table 7.3), we see when comparing VE and MP that there is a
noticeable influence on the performance. This difference is also pronounced in the results
for FFG (Fig. 7.6a), where MP outperforms the returns achieved by VE. Contrary to
the benchmarks above, SysAdmin (Fig. 7.6b) has a cyclic topology (ring-of-ring, where
subsets of agents in a ring of three are connected in a larger ring (Choudhury et al.,
2022).) Both action selection algorithms are considered, and we distinguish MST (solid)
and regular (dotted) variants. Here, MP especially does not work well, and the majority
of simulation time is spent in the action selection procedures. The MST extension from
Sect. 6.1.3 alleviates this issue, scaling our algorithm to a dense coordination structure
with 72 agents. It is clear that when many agents are involved, the MST approximation
is essential to achieving good returns.

4 16 32 64
Number of Agents

−140

−120

−100

−80

−60

−40

−20

C
um

ul
at

iv
e

D
isc

ou
nt

ed
R

ew
ar

d

Variable Elimination

FS-PFT-WPF
FT-PFT-WPF
PFT-WPF
FS-POMCP
FS-POMCP-WPF
FT-POMCP
FT-POMCP-WPF
POMCP
POMCP-WPF
RANDOM
SARSOP

4 16 32 64
Number of Agents

−140

−120

−100

−80

−60

−40

−20
C

um
ul

at
iv

e
D

isc
ou

nt
ed

R
ew

ar
d

MaxPlus

(a) FireFightingGraph(H = 10, c = 5, γ = 0.99, nf = 3). We compare our algorithm
variants (solid) to the state-of-the-art (dotted). For the four-agent setting, we ran the full-
width planner SARSOP (Kurniawati et al., 2008) for 30 minutes before running the same
episodic evaluation. The flat variants of POMCP and PFT were not able to run settings with
32 or more agents due to memory issues.

Q4: expensive simulations can prohibit PFT’s success. PFT is very competi-
tive in FFG (Fig. 7.6a) and MARS with an increased search duration (Table 7.5), but
achieves mediocre results in MARS with five seconds per step (Table 7.3). In CT (Ta-
ble 7.4), the PFT algorithm variants do not work well, as the simulation calls for this
environment are expensive. Thus, the algorithm does not achieve the required number of

62

101 102 103

7

8

9

10

11

12

13

14

6 Agents, |A| = 64

RANDOM
FS-POMCP-MP
FS-POMCP-MP-MST
FS-POMCP-VE
FS-POMCP-VE-MST
FT-POMCP-MP
FT-POMCP-MP-MST
FT-POMCP-VE
FT-POMCP-VE-MST
POMCP

101 102 103

20

21

22

23

24

25

26

27

28
18 Agents, |A| = 262144

101 102 103

75

80

85

90

95

100

105

72 Agents, |A| = 4.72237e + 21

Number of Simulations

C
um

ul
at

iv
e

D
isc

ou
nt

ed
R

ew
ar

d

(b) SysAdmin(H = 50, c = 5, γ = 0.95). We compare algorithms with the MST extension
(solid lines) and without (dotted lines). As SysAdmin is an MMDP, we do not consider
weighted filters due to the observation model requirement. POMCP was not able to run on
the 72-agent setting due to memory issues.

Figure 7.6: The x-axes are logarithmic and show the permitted number of simulations per
search. The time-out for the search call at each step was five seconds in both experiments.
Flat algorithms are not run for setting with more than 60 agents because of memory issues.
The error bars indicate 95% confidence intervals.

63

iterations to reach a sufficient search depth within the time limit. Additionally, it is not
clear how to run PFT variants on SysAdmin in its MMDP format. From our results,
we cannot claim that PFT variants outperform POMCP variants. In order to further
evaluate these considerations, we run MARS with a larger computational budget in the
subsection below.

7.3.3 Additional experiments
This section presents additional results of the empirical evaluation.

Increased search duration for MARS. In addition to the results in Table 7.3, we
ran a full experiment on three maps with 15 seconds of maximum searching time before
executing a step in the true environment. All environments had a horizon, i.e., maximum
episode duration, of 40. The results for the small map are visible in Table 7.5a. This is the
same map as in Table 7.3a, albeit the algorithms ran with a larger computational budget.
The flat algorithms perform best on the settings with fewer agents but either go out of
resources or do not achieve good results on the setting with 5 and 6 agents. A notice-
able exception is regular POMCP with weighted particle filtering (POMCP-WPF), which
achieves good results with 15 seconds of searching even when there are n = 5 agents and
k = 8 rocks, which results in a large action space of |A| = 371293. For the larger maps,
in Table 7.5b and 7.5c, we see that the flat algorithms fail to perform well even though
there is a reasonable computational budget. This can be explained by the fact that as
the number of rocks k increases, the action space increases drastically due to the expo-
nential factor of the number of agents. DESPOT achieves the best score in the medium
map with 3 agents (Table 7.5b). POMCP and PFT variants both perform well in large
maps with many agents. In particular, the factored statistics algorithms achieve good
performance, especially in the largest map (Table 7.5c). Moreover, FS-PFT-VE-WPF
is the only algorithm that achieves comparable performance to a flat counterpart in the
version of Table 7.5b with 3 agents. In conclusion, there is no clear winner between the
factored algorithms, but weighted particle filtering variants outperform unweighted par-
ticle filters. Additionally, from the difference in performance between Table 7.3 and 7.5,
we can conclude that the PFT variants perform much better with a larger computational
budget of 15 seconds as compared to 5 seconds.

64

(a) Small map: MARS(7, 8), γ = 0.95, c = 1.25

Environment MARS(7, 8)
Nr. of Agents 3 4 5 6
FS-PFT-VE 4.1± 1.7 2.0± 2.0 −3.4± 1.7 −6.4± 0.0
FS-POMCP-MP-WPF −1.1± 1.1 1.6± 1.0 −2.9± 1.5 −2.3± 2.1
FS-POMCP-VE 9.9± 2.1 7.9± 2.6 −1.1± 2.5 0.0± 2.8
FS-POMCP-VE-WPF 3.4± 1.1 4.9± 1.3 0.3± 1.4 6.6± 1.5
FS-POMCPOW-MP −0.9± 0.8 3.6± 1.0 3.0± 2.8 3.2± 1.3
FS-POMCPOW-VE 1.0± 1.3 −2.3± 1.6 −1.5± 0.6 6.2± 0.5
FT-PFT-MP −6.2± 1.9 −7.2± 3.1 −6.4± 3.4 −4.7± 3.2
FT-POMCP-MP 2.4± 1.4 1.4± 1.7 4.7± 1.8 −1.3± 3.4
FT-POMCP-MP-WPF 1.9± 1.1 2.2± 0.8 1.9± 1.0 1.1± 1.2
FT-POMCP-VE 5.1± 1.0 4.6± 1.4 7.0± 2.5 2.9± 1.1
FT-POMCP-VE-WPF 2.9± 1.2 4.3± 1.2 0.6± 1.6 2.4± 1.3
DESPOT OOR 20.8† ± 0.3 OOR OOR
PFT 2.1± 1.9 −10.6± 2.3 −2.3± 1.9 −0.7± 0.8
POMCP 20.0± 2.1 18.3± 4.3 −0.8± 2.1 0.0± 0.0
POMCP-WPF 11.1± 2.4 26.6± 2.4 8.5± 1.5 0.0± 0.0
POMCPOW 32.6± 2.1 12.3± 1.8 −4.9± 1.6 OOR

†: exceeded the time bound of 15 seconds per step.

Table 7.5: MARS experiments with three maps and various numbers of agents. Maximum
time per step is fifteen seconds.

65

(b) Medium map: MARS(11, 11), γ = 0.95, c = 1.25

Environment MARS(11, 11)
Nr. of Agents 3 4 5 6
FS-PFT-MP 4.3± 1.3 −4.1± 1.3 −4.6± 1.7 −2.6± 4.1
FS-PFT-VE 15.9± 1.4 −5.9± 1.3 −2.0± 1.9 7.2± 1.3
FS-POMCP-MP-WPF −1.4± 0.7 0.2± 0.4 2.1± 1.2 0.9± 1.7
FS-POMCP-VE 5.7± 2.1 1.5± 2.0 −6.4± 2.7 −2.8± 5.5
FS-POMCP-VE-WPF 3.4± 1.0 1.0± 0.8 −0.7± 1.1 −1.4± 1.3
FS-POMCPOW-MP 2.0± 1.0 −1.6± 0.7 −2.3± 1.0 −1.6± 2.4
FS-POMCPOW-VE −2.1± 0.8 1.8± 1.2 2.9± 1.5 −5.0± 1.5
FT-PFT-MP 1.9± 0.8 0.1± 1.4 −4.5± 2.3 −5.6± 2.5
FT-PFT-VE 3.1± 1.0 −7.8± 1.1 −9.5± 1.4 −5.4± 1.4
FT-POMCP-MP-WPF −1.1± 1.7 0.0± 0.0 1.1± 0.6 −0.7± 1.7
FT-POMCP-VE 4.0± 1.1 5.5± 1.4 3.4± 1.8 1.5± 0.9
FT-POMCP-VE-WPF 5.9± 1.0 −2.3± 1.0 3.1± 1.1 −2.1± 0.9
DESPOT 25.1± 0.7 OOR OOR OOR
PFT −9.1± 2.0 −6.8± 2.5 −0.2± 0.4 OOR
POMCP 18.0± 2.4 −6.4± 1.9 −6.4± 4.2 OOR
POMCP-WPF 6.9± 1.0 −9.3± 2.1 −4.5± 1.3 OOR
POMCPOW 14.2± 1.1 −4.1± 1.6 −1.1± 0.6 OOR

(c) Large map: MARS(15, 15), γ = 0.95, c = 1.25

Environment MARS(15, 15)
Nr. of Agents 3 4 5 6
FS-PFT-MP 2.3± 0.8 −2.4± 2.8 −3.0± 1.8 −2.6± 3.7
FS-PFT-VE −5.8± 1.3 −5.2± 1.2 4.2± 0.9 2.6± 0.6
FS-POMCP-VE-WPF −2.9± 0.8 0.5± 0.5 0.1± 0.8 6.9± 1.1
FS-POMCPOW-MP 1.3± 2.2 −0.5± 1.6 −0.3± 2.0 −1.7± 1.8
FS-POMCPOW-VE −2.9± 0.9 4.9± 0.8 3.3± 1.1 0.4± 1.4
FT-PFT-VE −3.8± 0.9 −3.6± 1.0 1.9± 0.6 3.0± 0.9
FT-POMCP-MP −1.0± 0.6 −0.3± 0.4 0.1± 0.1 −0.6± 1.1
FT-POMCP-MP-WPF −0.1± 0.6 0.1± 0.2 0.2± 0.2 0.4± 0.3
FT-POMCP-VE −1.3± 0.6 0.4± 0.6 −0.9± 0.6 3.4± 0.8
FT-POMCP-VE-WPF 1.7± 0.6 3.6± 0.7 −0.2± 0.4 −1.5± 0.6
DESPOT N.A. N.A. N.A. N.A.
PFT −1.7± 1.2 0.2± 0.7 −0.2± 0.2 OOR
POMCP 4.1± 2.0 0.1± 1.9 0.0± 0.0 OOR
POMCP-WPF 8.4± 1.3 −1.5± 1.1 0.0± 0.0 OOR
POMCPOW −13.5± 1.5 0.2± 1.1 −0.1± 0.5 OOR

Table 7.5: MARS experiments with three maps and various numbers of agents. Maximum
time per step is fifteen seconds.

66

Chapter 8

Contributions, Related Work &
Discussion

In this thesis, we introduced several extensions to the state-of-the-art in online planning
for Multi-Agent POMDPs. Specifically, we outline the following contributions:

• By mapping an MPOMDP to a particle-belief MMDP in chapter 4, we were set to
introduce a new version of this online planning algorithm which builds trees that
are insensitive to the size of the observation space (Sect. 4.3.2). Additionally, we
introduced the notion of progressive widening to limit the growth of the breadth of
the search tree progressively in MPOMDPs (Sect. 4.2). In doing so, we address the
problem of the factored statistics algorithm variant of POMCP in large observation
spaces.

• In chapter 5, we introduced two ways to combat the possibility of a deprived state
of a particle filter in domains with many agents. Both of these methods introduce
an assumption on the model by either considering a local observation function or a
factored state space. In our experiments, the locality-based filter proves the most
efficient out of the two methods.

• We outlined and compared two of the ways one can select actions in accordance
with the UCB1 algorithm in chapter 6. Furthermore, we developed an extension
that enables these algorithms to scale to problems with many agents by extracting
a tree from the graph based on the current estimated local values.

• In chapter 7, we ran an extensive experimental evaluation to assess the performance
of these algorithmic approaches, comparing numerous combinations of algorithm
variants.

8.1 Related Work
In our overview of the previous work related to this thesis, we consider three associated
fields and discuss these below.

MPOMDP planning. Our main point of reference for this thesis is the work by Amato
and Oliehoek (2015). Our work can be seen as an extension of theirs. To the best of our
knowledge, it is one of the very few papers published on online planning in MPOMDPs.

67

Further work on multi-agent online planning considered action selection. Originally,
Amato and Oliehoek (2015) only considered an exact method to compute maximal ac-
tions. Pfrommer (2016) introduced graphical POMCP with a message passing algorithm
but only considered CGs that are trees with local reward functions. Choudhury et al.
(2022) introduce an anytime selection algorithm for online planning. However, they only
consider MCTS in the fully observable setting with factored statistics. Because they as-
sume full state observability, they can support dynamic coordination graphs that partition
the problem based on the current state. In partially observable settings, achieving such
support for dynamic coordination within the tree search is much less trivial. However, a
straightforward solution comes to mind. The algorithm could determine the coordination
structure before every search iteration by considering the graph structure as part of the
state space and, thus, in the particle filter. It would proceed in a consecutive fashion,
determining a — possibly new — coordination structure before each call. In this case,
the search tree from previous calls cannot be re-used out of the box.

In the literature, MPOMDPs are often studied either in multi-agent communicative
decision problems (Pynadath and Tambe, 2002) or as a more tractable representation
of Dec-POMDPs by introducing a form of communication (Spaan et al., 2008; Messias
et al., 2011, 2013; Oliehoek and Amato, 2016). Messias et al. (2013) consider MPOMDPs
with asynchronous execution. Therefore, the assumption that every agent needs to pick
an action simultaneously is removed. They show that this event-driven model is more
scalable than traditional synchronous methods. Apart from Amato and Oliehoek (2015),
these studies often consider finding optimal policies offline. Cai et al. (2021) consider
MPOMDPs implicitly by their extension of DESPOT to large action spaces and ex-
periment on MARS with two agents, but do not consider the tractability problems of
planning in MPOMDPs with many agents.

Online planning in large domains. As solutions for MPOMDPs can be found by
representing the problem as a POMDP, we also compare to the relevant online plan-
ning literature of single-agent decision-making in a partially observable environment. In
particular, we focus on algorithms that are designed to find good solutions to problems
with large action and observation spaces. DESPOT (Ye et al., 2017) is an online planner
that depends on a deterministic simulator to create a sparse belief tree from a set of
sampled belief trajectories. However, it suffers from a large action space in particular.
DESPOT-α (Garg et al., 2019) and HyP-DESPOT (Cai et al., 2021) are extensions that
are aimed at addressing DESPOT’s scalability issues. The variants employ alpha-vectors
to fuse similar paths in the tree or (GPU) parallelism that relies on a factored simulator.

AdaOPS (Wu et al., 2021) and LABECOP (Hörger and Kurniawati, 2021) are online
planners that show good results in continuous domains but do not necessarily outperform
the state-of-the-art on discrete problems. AdaOPS achieves good performance by using
adaptive particle filtering and fusing similar observation branches. POMCPOW (Sun-
berg and Kochenderfer, 2018), which we extend in Sect. 4.2.1, utilises double progressive
widening and an explicit observation model with weighted particle filtering to combat
large (continuous) state and observation spaces.

Learning Q-functions in multi-agent decision problems. Boehmer et al. (2020)
employ a coordination graph in a multi-agent reinforcement learning setting. Similar
techniques in the RL setting have been considered by others (Guestrin et al., 2002a;
Kuyer et al., 2008; Van der Pol and Oliehoek, 2016; Li et al., 2021). These approaches

68

are characterised in that they learn neural pay-off functions, grouping network outputs
by the graph structure. Van der Pol and Oliehoek (2016) and Boehmer et al. (2020)
use a message-passing scheme in the graph-based neural network that is based on the
MP algorithm. In essence, our approaches also learn MLEs of the component Q-values
but online, i.e., without function approximation, which would require off-line training.
Those works also differ in the state representation, some assume fully observable states
(Van der Pol and Oliehoek, 2016) c.q. represent the belief approximation by a latent
vector in a recurrent neural network (Boehmer et al., 2020). The experimental comparison
to Böhmer et al. (2020) was not made in this thesis but is certainly interesting and
relates to one of our ideas for future work. A multitude of other work considers learning
neural network value and policy functions in multi-agent systems with decentralisation,
i.e., Dec-POMDPs (Rashid et al., 2018; Xiao et al., 2021). Therein, training is often
centralised, i.e., with communication, while guaranteeing that in deployment, the policy
can be executed in a decentralised fashion (Oliehoek and Amato, 2016; Gronauer and
Diepold, 2022).

8.2 Discussion
First, in this section, we discuss the position of our contributions with respect to the
related work described previously. Secondly, we discuss the considerations and effects of
the assumptions our methods entail.

Contributions. The contributions of this thesis were outlined in detail previously.
Our approach is an algorithmic contribution to scale online planning in MPOMDPs to
environments with many agents. It thus lies in the intersection of the fields of online
and MPOMDP planning. Relatively few papers are published in this domain. We built
on the initial work of Amato and Oliehoek (2015). On the one side, we introduced a
partially novel set of algorithms that take a similar approach to tackling the problems
that arise in the combinatorial explosion of the solution space when many agents are
involved. On the other side, we enhanced the state-of-the-art by further increasing the
use of structure to scale to settings with many agents. Therein, our approach tackles the
components that fail in these situations, such as the belief estimator, i.e., particle filters,
and action selection algorithms. Our proposed methods aim to solve these problems
independently of the encompassing online planning algorithm. In doing so, our methods
aim to be applicable to a multitude of online planning algorithms, such as the two main
base algorithms, POMCPs and PFT contained in this thesis. Finally, we do not think
our methods are necessarily improvements in settings with few agents where existing
algorithms, e.g., DESPOT or POMCPOW, can still find suitable solutions.

Assumptions. Theorem 4.1.1 considers the locality of the factored Q-functions as a
requirement for the algorithm to perform equally well to regular POMCP in the limit.
It concerns the fact that the components of the CG must exhibit strict locality for the
method to perform as expected, thereby limiting the introduced bias. If the value is
not sufficiently structured, the representational capacity of the search tree is limited
and prone to underfitting. In natural problems, there might always be interdependence
or confounding that, as time evolves, in the long run, influence far-away components.
This can even occur if the problem seems sufficiently decoupled (Oliehoek et al., 2021).

69

In practice, this assumption is not a direct requirement since the algorithms can still
perform better than traditional methods without these assumptions.1 Castellini et al.
(2021) report similar findings in their experimental study on the factorisation of value in
stateless settings.

Chapter 5 considers two methods to improve the efficiency of belief approximation.
Both of these methods introduce an assumption.

Factored particle filtering relies on the assumption that the state can be factored
into a vector of state variables. Furthermore, it requires that we can identify clusters of
state variables of sufficient size, ideally with respect to the structure given by the CG. In
practice, this method does not scale as well as desired, as the sampling procedure is prone
to failure when there is sufficient overlap between the variables in the clusters. In order
for the technique to work well, further assumptions are required, such that there exists
a minimal inter-dependency between state variables. In our experiments, locality-based
filtering performs much more reliably.

Locality-based filtering assumes that there exists an individual observation function
that is independent given the joint action and state. Furthermore, because we lack a
formal guarantee on the estimator performance of the ensemble, the method relies on
whether the combination of target distributions based on a subset of observations can
function as a good proxy for the posterior distribution. In practice, this seems to perform
well. The assumption of the individual observation probability is arguably realistic, as
the joint probability often relies on the probability of the observation of each agent.
However, there likely are settings in which this does not hold. If the joint observation
cannot be factored into individual observations, this would not be a realistic assumption.
Furthermore, if the joint belief can only be reconstructed from the information distributed
to all agents, our method, considering only local information, would fail to give a good
approximation.

1For example, in the limit, POMCP converges to an ϵ-optimal result, but in practice, for large
MPOMDPs, this is typically infeasible given the exponential size of the solution space.

70

Chapter 9

Future Work & Conclusion

In the final chapter of this thesis, we sketch new ideas for future research and give a
conclusion to this work.

9.1 Future Work
Optimal decision-making in stochastic environments with partial observability is non-
trivial. In the case that these systems consist of many agents, this problem becomes even
harder. Although this thesis might be a step forward, we enumerate possible avenues for
further extension here.

Factored beliefs. Messias et al. (2011) consider factored Dec-POMDPs with free com-
munication, resulting in a factored MPOMDP. They show how the belief can be factored
according to subsets of the state space. However, these beliefs are still conditioned on the
joint history. In line with Djuric and Bugallo (2013), one might consider representing a
set of independent beliefs over sets of the factored state-space for which the intersection
is the empty set. One could sample from these sets to construct a full-state particle,
propagate this through the joint dynamics function (simulator), project the full particle
to a local particle, and update the weight according to our method in chapter 5. Although
it is unsure how this would affect the quality of the belief approximation, it might require
updating even fewer particles, thereby improving the computational complexity of the
filtering procedure.

Decentralisation. Amato and Oliehoek (2015) rightly note that the FT algorithm
variants might be able to reduce the communication required during planning. The MP
action selection algorithm can also be implemented in a distributed manner. Cai et al.
(2021) use a factorised simulator to enable parallelism during the search. Combining these
ideas, one could create a concurrent approach to running the FT algorithm variants,
where subsets of agents are grouped together as defined by a CG, and steps in the
environment are set independently between the groups. Centralised action selection is
then executed by decentralised message passing (Rogers et al., 2011). However, it is
unclear how synchronisation should be handled in the case of a factored simulator and
how this strict decoupling would affect planning performance.

71

KLD-sampling. AdaOPS (Wu et al., 2021) uses a Kullback-Leibner divergence (KLD)
based sampling scheme by Fox (2001) to determine the number of particles propagated
dynamically. They partition the state into buckets and let the sampler determine the
required number of particles to ensure some predefined approximation error with a given
confidence level. In our adopted version of the particle filter tree algorithm by Lim et al.
(2023), the statically set number of particles C has a large influence on both the time
complexity and performance of the algorithm. We are interested to see if determining C
dynamically with a KLD sampler improves performance or can reduce the computational
complexity.

Neural network policy improvement. The recent success of combining online plan-
ning algorithms with neural function approximation by Silver et al. (2017) (concurrently
by Anthony et al. (2017)), resulting in a model-based reinforcement learning algorithm,
is also applicable to our setting. One could combine the algorithmic approaches of this
thesis with neural network predictions in an iterative learning loop, using the structure
of the problem to reduce the scope of the output predictions (Van der Pol and Oliehoek,
2016; Boehmer et al., 2020). This setup could enjoy parameter sharing and increased
sample efficiency. We expect this combination to work well and aim to investigate this
further.

Continuous domains. Finally, we note that inspiration for some of the algorithms,
specifically FS-POMCPOW and PFT variants, introduced in this thesis (chapter 4,
mainly) partly originates from the recent developments in developing online algorithms
for POMDPs with continuous spaces (Sunberg and Kochenderfer, 2018; Fischer and Tas,
2020b; Couëtoux et al., 2011; Lim et al., 2023, 2020). This does not mean that these algo-
rithms will already perform well in continuous domains, as the factorisation of a contin-
uous space still leads to an infinite number of possibilities, i.e., actions and observations,
in the sub-domains. Therefore, an enumeration of a factored action or observation space
remains infeasible. However, our weighted particle filter can support continuous state,
action, and observation spaces, and both FS-POMCPOW and PFT consist of techniques
that can handle such infinitely large observation spaces by progressive observation widen-
ing and insensitivity to observation space size, respectively. Currently, these algorithms
lack a sophisticated approach to handle continuous actions. However, they could be ex-
tended to handle such domains by adapting existing techniques. For example, by using
a Bayesian optimisation method (Mern et al., 2021) or a Voronoi partition of the action
space in the form of a Voronoi optimistic optimisation approach (Kim et al., 2020; Lim
et al., 2021).

We hypothesise that, if slightly adapted for these continuous spaces, these algorithms
can also perform reasonably well in centralised multi-agent domains with continuous
spaces.

72

9.2 Conclusion
Finding optimal policies for partially observable stochastic problems with solution spaces
that grow exponentially, such as those modelled by MPOMDPs, is generally difficult. In
this thesis, we have introduced several extensions to the state-of-the-art that allow us
to scale to problems with many agents by exploiting the structure that these systems
exhibit. In particular, we proposed solutions based on this structure to resolve the key
issues that start appearing when the number of agents grows large.

A drawback to our work is the lack of theoretical guarantees these improvements come
with. However, we conclude that within the context of our experimental evaluation, our
algorithms perform well. Specifically, they show competitive performance in settings with
few agents and outperform the state-of-the-art in settings with many agents. Further-
more, by our experimental evaluation, we find that an artificial structure in the form of
a coordination graph can act as a heuristic. This heuristic decomposition can scale our
online planning algorithms to problems that do not exhibit natural decomposition. This
finding, in which decomposing the value of problems that do not necessarily factor can
still allow for good estimates, aligns with the work of Castellini et al. (2021). Therefore,
factorisation can make online planning in a general class of MPOMDPs with many agents
feasible. However, the introduction of such a heuristic can come at a price, as planners
that consider the full representation of the problem generally achieve better performance
as long as the solution space remains of tractable size.

73

Glossary

FS-PFT factored-statistics (FS) PFT. 33

FS-POMCP factored-statistics (FS) POMCP. 29

FT-PFT factored-trees (FT) PFT. 33

FT-POMCP factored-trees (FT) POMCP. 30

CT CaptureTarget. 53, 55, 57, 62, 84

FFG FireFightingGraph. 51, 52, 55, 57, 58, 62, 84

MARS multi-agent RockSample. 52, 53, 55, 57, 62, 64, 68, 84

belief-MDP belief-state Markov decision process. 11, 18, 33

CG coordination graph. 27, 29, 36, 40, 46–49, 51, 56, 57, 68, 69, 71

Dec-MDP decentralised Markov decision process. 14

Dec-POMDP decentralised partially observable Markov decision process. 14, 68, 69,
71

ESS effective sample size. 24, 25

FPF factored particle filtering. 39, 56, 61

FS factored-statistics. 29, 33, 56, 57, 74

FT factored-trees. 30, 32, 33, 56, 57, 71, 74

MAP maximum a posteriori. 47

MCTS Monte Carlo tree search. 16, 18, 19, 68

MDP Markov decision process. 3, 7–14, 33

MIS multiple importance sampling. 43

MLE maximum likelihood estimate. 17, 30, 35, 69

MMDP multi-agent Markov decision process. 12, 13, 50–52, 67

MoE mixture of experts. 28, 29, 45, 57

74

MP max-plus. 47–49, 56, 57, 69, 71

MPOMDP multi-agent partially observable Markov decision process. 3–5, 13, 14, 17,
21, 29, 33, 34, 38, 39, 41, 52, 57, 67–71, 73

MST maximum spanning tree. 48, 49, 56

PDF probability density function. 22

PF unweighted particle filter. 20

PFT sparse particle filter tree. 33, 34, 41, 53, 55–57, 62, 64, 69, 74

POMCP partially observable Monte Carlo planning. 18, 29, 30, 41, 49, 52, 53, 57, 58,
64, 69, 70, 74

POMDP partially observable Markov decision process. 3, 10–13, 20, 21, 29, 33, 34, 67,
68, 72

RL reinforcement learning. 68

SIR sequential importance re-sampling. 25, 26, 56

SIS sequential importance sampling. 23, 25

UCB1 upper confidence bound algorithm 1. 17, 29, 30, 35, 36, 45, 49, 55, 56, 67

UCT upper confidence trees. 17, 18, 35, 49

VE variable elimination. 45–49, 56

WPF weighted particle filter. 21, 26, 56, 64

75

Bibliography

Ahmadi, M., Jansen, N., Wu, B., and Topcu, U. (2021). Control theory meets pomdps:
A hybrid systems approach. IEEE Trans. Autom. Control., 66(11):5191–5204.

Amato, C. and Oliehoek, F. A. (2015). Scalable planning and learning for multiagent
pomdps. In Bonet, B. and Koenig, S., editors, Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas, USA, pages
1995–2002. AAAI Press.

Anthony, T., Tian, Z., and Barber, D. (2017). Thinking fast and slow with deep learning
and tree search. In Guyon, I., von Luxburg, U., Bengio, S., Wallach, H. M., Fergus,
R., Vishwanathan, S. V. N., and Garnett, R., editors, Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, December 4-9, 2017, Long Beach, CA, USA, pages 5360–5370.

Arcieri, G., Hoelzl, C., Schwery, O., Straub, D., Papakonstantinou, K. G., and Chatzi,
E. N. (2022). Bridging pomdps and bayesian decision making for robust mainte-
nance planning under model uncertainty: An application to railway systems. CoRR,
abs/2212.07933.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the multiarmed
bandit problem. Mach. Learn., 47(2-3):235–256.

Badings, T. S., Simão, T. D., Suilen, M., and Jansen, N. (2023). Decision-making under
uncertainty: Beyond probabilities. CoRR, abs/2303.05848.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information Science
and Statistics). Springer-Verlag, Berlin, Heidelberg.

Boehmer, W., Kurin, V., and Whiteson, S. (2020). Deep coordination graphs. In Proceed-
ings of the 37th International Conference on Machine Learning, ICML 2020, 13-18 July
2020, Virtual Event, volume 119 of Proceedings of Machine Learning Research, pages
980–991. PMLR.

Bradtke, S. J. and Duff, M. O. (1994). Reinforcement learning methods for continuous-
time markov decision problems. In Tesauro, G., Touretzky, D. S., and Leen, T. K.,
editors, Advances in Neural Information Processing Systems 7, [NIPS Conference, Den-
ver, Colorado, USA, 1994], pages 393–400. MIT Press.

Browne, C., Powley, E. J., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen,
P., Tavener, S., Liebana, D. P., Samothrakis, S., and Colton, S. (2012). A survey of
monte carlo tree search methods. IEEE Trans. Comput. Intell. AI Games, 4(1):1–43.

76

Böhmer, W., Kurin, V., and Whiteson, S. (2020). Deep Coordination Graphs.
arXiv:1910.00091 [cs].

Cai, P., Luo, Y., Hsu, D., and Lee, W. S. (2021). Hyp-despot: A hybrid parallel algorithm
for online planning under uncertainty. Int. J. Robotics Res., 40(2-3).

Cassandra, A. R., Kaelbling, L. P., and Littman, M. L. (1994). Acting optimally in
partially observable stochastic domains. In Hayes-Roth, B. and Korf, R. E., editors,
Proceedings of the 12th National Conference on Artificial Intelligence, Seattle, WA,
USA, July 31 - August 4, 1994, Volume 2, pages 1023–1028. AAAI Press / The MIT
Press.

Castellini, J., Oliehoek, F. A., Savani, R., and Whiteson, S. (2021). Analysing factor-
izations of action-value networks for cooperative multi-agent reinforcement learning.
Auton. Agents Multi Agent Syst., 35(2):25.

Chen, D., Yang-Zhao, S., Lloyd, J. W., and Ng, K. S. (2022). Factored conditional
filtering: Tracking states and estimating parameters in high-dimensional spaces. CoRR,
abs/2206.02178.

Choudhury, S., Gupta, J. K., Morales, P., and Kochenderfer, M. J. (2022). Scalable online
planning for multi-agent MDPs. J. Artif. Intell. Res., 73:821–846.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, 3rd Edition. MIT Press.

Couëtoux, A., Hoock, J., Sokolovska, N., Teytaud, O., and Bonnard, N. (2011). Con-
tinuous upper confidence trees. In Coello, C. A. C., editor, Learning and Intelligent
Optimization - 5th International Conference, LION 5, Rome, Italy, January 17-21,
2011. Selected Papers, volume 6683 of Lecture Notes in Computer Science, pages 433–
445. Springer.

Djuric, P. M. and Bugallo, M. F. (2013). Particle filtering for high-dimensional systems. In
5th IEEE International Workshop on Computational Advances in Multi-Sensor Adap-
tive Processing, CAMSAP 2013, St. Martin, France, December 15-18, 2013, pages
352–355. IEEE.

Elvira, V. and Martino, L. (2021). Advances in Importance Sampling, pages 1–14. John
Wiley & Sons, Ltd.

Elvira, V., Martino, L., Luengo, D., and Bugallo, M. F. (2019). Generalized Multiple
Importance Sampling. Statistical Science, 34(1):129 – 155.

Fairbank, M. and Alonso, E. (2012). The divergence of reinforcement learning algorithms
with value-iteration and function approximation. In The 2012 International Joint
Conference on Neural Networks (IJCNN), Brisbane, Australia, June 10-15, 2012, pages
1–8. IEEE.

Fischer, J. and Tas, Ö. S. (2020a). Information particle filter tree: An online algorithm for
pomdps with belief-based rewards on continuous domains. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 3177–3187.
PMLR.

77

Fischer, J. and Tas, Ö. S. (2020b). Information particle filter tree: An online algorithm for
POMDPs with belief-based rewards on continuous domains. In Proceedings of the 37th
International Conference on Machine Learning, ICML 2020, 13-18 July 2020, Virtual
Event, volume 119 of Proceedings of Machine Learning Research, pages 3177–3187.
PMLR.

Fox, D. (2001). Kld-sampling: Adaptive particle filters. In Dietterich, T. G., Becker, S.,
and Ghahramani, Z., editors, Advances in Neural Information Processing Systems 14
[Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December
3-8, 2001, Vancouver, British Columbia, Canada], pages 713–720. MIT Press.

Garg, N. P., Hsu, D., and Lee, W. S. (2019). Despot-alpha: Online POMDP planning
with large state and observation spaces. In Bicchi, A., Kress-Gazit, H., and Hutchinson,
S., editors, Robotics: Science and Systems XV, University of Freiburg, Freiburg im
Breisgau, Germany, June 22-26, 2019.

Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993). Novel approach to
nonlinear/non-gaussian bayesian state estimation. IEE Proceedings F (Radar and Sig-
nal Processing), 140(2):107–113(6).

Gronauer, S. and Diepold, K. (2022). Multi-agent deep reinforcement learning: a survey.
Artif. Intell. Rev., 55(2):895–943.

Guestrin, C., Koller, D., and Parr, R. (2001). Multiagent planning with factored MDPs.
In Dietterich, T. G., Becker, S., and Ghahramani, Z., editors, Advances in Neural Infor-
mation Processing Systems 14 [Neural Information Processing Systems: Natural and
Synthetic, NIPS 2001, December 3-8, 2001, Vancouver, British Columbia, Canada],
pages 1523–1530. MIT Press.

Guestrin, C., Lagoudakis, M. G., and Parr, R. (2002a). Coordinated reinforcement learn-
ing. In Sammut, C. and Hoffmann, A. G., editors, Machine Learning, Proceedings of
the Nineteenth International Conference (ICML 2002), University of New South Wales,
Sydney, Australia, July 8-12, 2002, pages 227–234. Morgan Kaufmann.

Guestrin, C., Venkataraman, S., and Koller, D. (2002b). Context-specific multiagent
coordination and planning with factored mdps. In Dechter, R., Kearns, M. J., and
Sutton, R. S., editors, Proceedings of the Eighteenth National Conference on Artificial
Intelligence and Fourteenth Conference on Innovative Applications of Artificial Intel-
ligence, July 28 - August 1, 2002, Edmonton, Alberta, Canada, pages 253–259. AAAI
Press / The MIT Press.

Hörger, M. and Kurniawati, H. (2021). An on-line POMDP solver for continuous obser-
vation spaces. In IEEE International Conference on Robotics and Automation, ICRA
2021, Xi’an, China, May 30 - June 5, 2021, pages 7643–7649. IEEE.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-optimal regret bounds for reinforcement
learning. J. Mach. Learn. Res., 11:1563–1600.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artif. Intell., 101(1-2):99–134.

78

Katt, S., Oliehoek, F. A., and Amato, C. (2019). Bayesian reinforcement learning in
factored pomdps. In Elkind, E., Veloso, M., Agmon, N., and Taylor, M. E., editors,
Proceedings of the 18th International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’19, Montreal, QC, Canada, May 13-17, 2019, pages 7–15.
International Foundation for Autonomous Agents and Multiagent Systems.

Kearns, M. J., Mansour, Y., and Ng, A. Y. (2002). A sparse sampling algorithm for near-
optimal planning in large markov decision processes. Mach. Learn., 49(2-3):193–208.

Kennedy, T. (2016). Monte Carlo Methods-a special topics course.

Kim, B., Lee, K., Lim, S., Kaelbling, L. P., and Lozano-Pérez, T. (2020). Monte carlo tree
search in continuous spaces using voronoi optimistic optimization with regret bounds.
In The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI 2020,
The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI
2020, New York, NY, USA, February 7-12, 2020, pages 9916–9924. AAAI Press.

Kochenderfer, M., Amato, C., Chowdhary, G., How, J., and Reynolds, H. (2015). Decision
Making Under Uncertainty: Theory and Application. MIT Lincoln Laboratory Series.
MIT Press.

Kochenderfer, M. J. (2015). Decision making under uncertainty: theory and application.
MIT press.

Kocsis, L. and Szepesvári, C. (2006). Bandit based Monte-Carlo planning. In ECML,
volume 4212 of Lecture Notes in Computer Science, pages 282–293. Springer.

Kok, J. R. and Vlassis, N. (2005). Using the max-plus algorithm for multiagent decision
making in coordination graphs. In Bredenfeld, A., Jacoff, A., Noda, I., and Takahashi,
Y., editors, RoboCup 2005: Robot Soccer World Cup IX, volume 4020 of Lecture Notes
in Computer Science, pages 1–12. Springer.

Kok, J. R. and Vlassis, N. (2006a). Collaborative Multiagent Reinforcement Learning by
Payoff Propagation. The Journal of Machine Learning Research, 7:1789–1828.

Kok, J. R. and Vlassis, N. (2006b). Collaborative multiagent reinforcement learning by
payoff propagation. J. Mach. Learn. Res., 7:1789–1828.

Kurniawati, H., Hsu, D., and Lee, W. S. (2008). SARSOP: efficient point-based POMDP
planning by approximating optimally reachable belief spaces. In Brock, O., Trinkle, J.,
and Ramos, F., editors, Robotics: Science and Systems IV, Eidgenössische Technische
Hochschule Zürich, Zurich, Switzerland, June 25-28, 2008. The MIT Press.

Kuyer, L., Whiteson, S., Bakker, B., and Vlassis, N. (2008). Multiagent reinforce-
ment learning for urban traffic control using coordination graphs. In Daelemans, W.,
Goethals, B., and Morik, K., editors, Machine Learning and Knowledge Discovery in
Databases, European Conference, ECML/PKDD 2008, Antwerp, Belgium, September
15-19, 2008, Proceedings, Part I, volume 5211 of Lecture Notes in Computer Science,
pages 656–671. Springer.

Lai, T. and Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Adv.
Appl. Math., 6(1):4–22.

79

Li, S., Gupta, J. K., Morales, P., Allen, R. E., and Kochenderfer, M. J. (2021). Deep
implicit coordination graphs for multi-agent reinforcement learning. In Dignum, F.,
Lomuscio, A., Endriss, U., and Nowé, A., editors, AAMAS ’21: 20th International
Conference on Autonomous Agents and Multiagent Systems, Virtual Event, United
Kingdom, May 3-7, 2021, pages 764–772. ACM.

Lim, M. H., Becker, T. J., Kochenderfer, M. J., Tomlin, C. J., and Sunberg, Z. N. (2023).
Optimality guarantees for particle belief approximation of POMDPs.

Lim, M. H., Tomlin, C. J., and Sunberg, Z. N. (2020). Sparse tree search optimality
guarantees in POMDPs with continuous observation spaces. In Bessiere, C., editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelli-
gence, IJCAI 2020, pages 4135–4142. ijcai.org.

Lim, M. H., Tomlin, C. J., and Sunberg, Z. N. (2021). Voronoi progressive widening:
Efficient online solvers for continuous state, action, and observation pomdps. In 2021
60th IEEE Conference on Decision and Control (CDC), Austin, TX, USA, December
14-17, 2021, pages 4493–4500. IEEE.

Loeliger, H. (2004). An introduction to factor graphs. IEEE Signal Process. Mag.,
21(1):28–41.

Luo, Y., Bai, H., Hsu, D., and Lee, W. S. (2019). Importance sampling for online planning
under uncertainty. Int. J. Robotics Res., 38(2-3).

Madani, O., Hanks, S., and Condon, A. (1999). On the undecidability of probabilis-
tic planning and infinite-horizon partially observable markov decision problems. In
Hendler, J. and Subramanian, D., editors, Proceedings of the Sixteenth National Con-
ference on Artificial Intelligence and Eleventh Conference on Innovative Applications
of Artificial Intelligence, July 18-22, 1999, Orlando, Florida, USA, pages 541–548.
AAAI Press / The MIT Press.

Madani, O., Hanks, S., and Condon, A. (2003). On the undecidability of probabilistic
planning and related stochastic optimization problems. Artif. Intell., 147(1-2):5–34.

Memarzadeh, M. and Boettiger, C. (2018). Adaptive management of ecological systems
under partial observability. Biological Conservation, 224:9–15.

Mern, J., Yildiz, A., Sunberg, Z., Mukerji, T., and Kochenderfer, M. J. (2021). Bayesian
optimized monte carlo planning. In Thirty-Fifth AAAI Conference on Artificial Intel-
ligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artifi-
cial Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 11880–11887.
AAAI Press.

Mertens, J. F. and Neyman, A. (1981). Stochastic games. International Journal of Game
Theory, 10:53–66.

Messias, J. V., Spaan, M. T. J., and Lima, P. U. (2011). Efficient offline communication
policies for factored multiagent POMDPs. In NIPS, pages 1917–1925.

80

Messias, J. V., Spaan, M. T. J., and Lima, P. U. (2013). Multiagent pomdps with
asynchronous execution. In Gini, M. L., Shehory, O., Ito, T., and Jonker, C. M., editors,
International conference on Autonomous Agents and Multi-Agent Systems, AAMAS
’13, Saint Paul, MN, USA, May 6-10, 2013, pages 1273–1274. IFAAMAS.

Miehling, E., Rasouli, M., and Teneketzis, D. (2018). A POMDP approach to the dynamic
defense of large-scale cyber networks. IEEE Trans. Inf. Forensics Secur., 13(10):2490–
2505.

Moerland, T. M., Broekens, J., Plaat, A., and Jonker, C. M. (2023). Model-based rein-
forcement learning: A survey. Found. Trends Mach. Learn., 16(1):1–118.

Ng, B., Peshkin, L., and Pfeffer, A. (2002). Factored particles for scalable monitoring. In
Darwiche, A. and Friedman, N., editors, UAI ’02, Proceedings of the 18th Conference
in Uncertainty in Artificial Intelligence, University of Alberta, Edmonton, Alberta,
Canada, August 1-4, 2002, pages 370–377. Morgan Kaufmann.

Oliehoek, F. A. and Amato, C. (2016). A Concise Introduction to Decentralized POMDPs.
Springer Briefs in Intelligent Systems. Springer.

Oliehoek, F. A., Spaan, M. T. J., Whiteson, S., and Vlassis, N. (2008). Exploiting locality
of interaction in factored dec-pomdps. In Padgham, L., Parkes, D. C., Müller, J. P.,
and Parsons, S., editors, 7th International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2008), Estoril, Portugal, May 12-16, 2008, Volume
1, pages 517–524. IFAAMAS.

Oliehoek, F. A., Witwicki, S. J., and Kaelbling, L. P. (2021). A sufficient statistic for
influence in structured multiagent environments. J. Artif. Intell. Res., 70:789–870.

Owen, A. B. (2013). Monte Carlo theory, methods and examples (book draft).

Papadimitriou, C. H. and Tsitsiklis, J. N. (1987). The complexity of Markov decision
processes. Math. Oper. Res., 12(3):441–450.

Pearl, J. (1989). Probabilistic reasoning in intelligent systems - networks of plausible in-
ference. Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann.

Peng, X. B., Chang, M., Zhang, G., Abbeel, P., and Levine, S. (2019). MCP: Learning
composable hierarchical control with multiplicative compositional policies. In NeurIPS,
pages 3681–3692. Curran Associates, Inc.

Pfrommer, J. (2016). Graphical partially observable monte-carlo planning. Learning,
Inference and Control of Multi-Agent Systems.

Puterman, M. L. (1994). Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. Wiley Series in Probability and Statistics. Wiley.

Pynadath, D. V. and Tambe, M. (2002). The communicative multiagent team decision
problem: Analyzing teamwork theories and models. J. Artif. Intell. Res., 16:389–423.

Qiu, Q. and Pedram, M. (1999). Dynamic power management based on continuous-time
markov decision processes. In Irwin, M. J., editor, Proceedings of the 36th Conference
on Design Automation, New Orleans, LA, USA, June 21-25, 1999, pages 555–561.
ACM Press.

81

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Foerster, J. N., and Whiteson,
S. (2018). QMIX: monotonic value function factorisation for deep multi-agent reinforce-
ment learning. In Dy, J. G. and Krause, A., editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 4292–4301. PMLR.

Rogers, A., Farinelli, A., Stranders, R., and Jennings, N. R. (2011). Bounded approximate
decentralised coordination via the max-sum algorithm. Artif. Intell., 175(2):730–759.

Sandino, J., Vanegas, F., Gonzalez, F., and Maire, F. (2020). Autonomous uav navigation
for active perception of targets in uncertain and cluttered environments. In 2020 IEEE
Aerospace Conference, pages 1–12. IEEE.

Septier, F. and Peters, G. W. (2016). Langevin and hamiltonian based sequential MCMC
for efficient bayesian filtering in high-dimensional spaces. IEEE J. Sel. Top. Signal
Process., 10(2):312–327.

Shapley, L. S. (1953). Stochastic games. Proceedings of the national academy of sciences,
39(10):1095–1100.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert,
T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T. P., Hui, F., Sifre, L., van den
Driessche, G., Graepel, T., and Hassabis, D. (2017). Mastering the game of go without
human knowledge. Nat., 550(7676):354–359.

Silver, D. and Veness, J. (2010). Monte-carlo planning in large POMDPs. In NIPS, pages
2164–2172. Curran Associates, Inc.

Slivkins, A. (2019). Introduction to multi-armed bandits. Found. Trends Mach. Learn.,
12(1-2):1–286.

Smith, A. F. and Gelfand, A. E. (1992). Bayesian statistics without tears: a sampling–
resampling perspective. The American Statistician, 46(2):84–88.

Smith, T. and Simmons, R. G. (2004). Heuristic search value iteration for POMDPs.
In Chickering, D. M. and Halpern, J. Y., editors, UAI ’04, Proceedings of the 20th
Conference in Uncertainty in Artificial Intelligence, Banff, Canada, July 7-11, 2004,
pages 520–527. AUAI Press.

Spaan, M. T. (2012). Partially observable markov decision processes. In Reinforcement
Learning, pages 387–414. Springer.

Spaan, M. T. J., Oliehoek, F. A., and Vlassis, N. (2008). Multiagent planning under un-
certainty with stochastic communication delays. In Rintanen, J., Nebel, B., Beck, J. C.,
and Hansen, E. A., editors, Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling, ICAPS 2008, Sydney, Australia, September 14-
18, 2008, pages 338–345. AAAI.

Sunberg, Z. N., Ho, C. J., and Kochenderfer, M. J. (2017). The value of inferring the
internal state of traffic participants for autonomous freeway driving. In ACC, pages
3004–3010. IEEE.

82

Sunberg, Z. N. and Kochenderfer, M. J. (2018). Online algorithms for POMDPs with
continuous state, action, and observation spaces. In de Weerdt, M., Koenig, S., Röger,
G., and Spaan, M. T. J., editors, Proceedings of the Twenty-Eighth International Con-
ference on Automated Planning and Scheduling, ICAPS 2018, Delft, The Netherlands,
June 24-29, 2018, pages 259–263. AAAI Press.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement learning: an introduction. Adaptive
computation and machine learning. MIT Press, Cambridge, Mass.

Thrun, S. (1999). Monte carlo pomdps. Advances in neural information processing
systems, 12.

Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic robotics. Intelligent robotics
and autonomous agents. MIT Press.

Ulbrich, S. and Maurer, M. (2013). Probabilistic online POMDP decision making for lane
changes in fully automated driving. In ITSC, pages 2063–2067. IEEE.

Van Der Pol, E. (2016). Deep reinforcement learning for coordination in traffic light
control. Master’s thesis, University of Amsterdam.

Van der Pol, E. and Oliehoek, F. A. (2016). Coordinated deep reinforcement learners
for traffic light control. Proceedings of learning, inference and control of multi-agent
systems (at NIPS 2016), 8:21–38.

Vlassis, N., Elhorst, R., and Kok, J. R. (2004). Anytime algorithms for multiagent
decision making using coordination graphs. In Proceedings of the IEEE International
Conference on Systems, Man & Cybernetics: The Hague, Netherlands, 10-13 October
2004, pages 953–957. IEEE.

Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S. (2004). Tree consistency and
bounds on the performance of the max-product algorithm and its generalizations. Stat.
Comput., 14(2):143–166.

Wainwright, M. J., Jaakkola, T. S., and Willsky, A. S. (2005). MAP estimation via
agreement on (hyper)trees: Message-passing and linear programming. CoRR, ab-
s/cs/0508070.

Wiering, M. and Van Otterlo, M. (2012). Reinforcement Learning: State of the Art.
Springer.

Wu, C., Yang, G., Zhang, Z., Yu, Y., Li, D., Liu, W., and Hao, J. (2021). Adaptive
online packing-guided search for pomdps. In Ranzato, M., Beygelzimer, A., Dauphin,
Y. N., Liang, P., and Vaughan, J. W., editors, Advances in Neural Information Process-
ing Systems 34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, pages 28419–28430.

Xiao, Y., Lyu, X., and Amato, C. (2021). Local advantage actor-critic for robust multi-
agent deep reinforcement learning. In International Symposium on Multi-Robot and
Multi-Agent Systems, MRS 2021, Cambridge, United Kingdom, November 4-5, 2021,
pages 155–163. IEEE.

Ye, N., Somani, A., Hsu, D., and Lee, W. S. (2017). DESPOT: online POMDP planning
with regularization. J. Artif. Intell. Res., 58:231–266.

83

Chapter 10

Experimental Evaluation

10.1 Full Results
For completeness, we report the full results of FFG (Fig. 10.1), CT (Table 10.1), and
MARS (Table 10.2 and 10.3).

10.1.1 Firefighting

101 102 103

−20

−18

−16

−14

−12

−10

−8

4 Agents, |A| = |Ω| = 16

RANDOM
FS-PFT-MP-WPF
FS-PFT-VE-WPF
FS-POMCP-MP
FS-POMCP-MP-WPF
FS-POMCP-VE
FS-POMCP-VE-WPF
FT-PFT-MP-WPF
FT-PFT-VE-WPF
FT-POMCP-MP
FT-POMCP-MP-WPF
FT-POMCP-VE
FT-POMCP-VE-WPF
PFT-WPF
POMCP
POMCP-WPF
SARSOP

101 102 103

−45

−40

−35

−30

−25

−20

16 Agents, |A| = |Ω| = 65536

101 102 103

−140

−120

−100

−80

−60
64 Agents, |A| = |Ω| = 1.84467e + 19

Number of Simulations

Cu
m

ul
at

iv
e

D
isc

ou
nt

ed
Re

wa
rd

Figure 10.1: Extended results for FireFightingGraph(H = 10, c = 5, γ = 0.99, nf =
3). These results were compressed into Fig. 7.4 and 7.6a.

84

10.1.2 CaptureTarget

Nr. of agents 3 4 5 6
POMCP 0.08± 0.05 0.05± 0.04 0.08± 0.05 0.19± 0.08
POMCP-WPF 0.28± 0.09 0.62± 0.10 0.69± 0.09 0.54± 0.10
FS-PFT-MP-WPF 0.01± 0.02 0.01± 0.02 0.04± 0.04 0.09± 0.06
FS-PFT-VE-WPF 0.00± 0.00 0.00± 0.00 0.02± 0.03 0.02± 0.03
FS-POMCP-MP 0.00± 0.00 0.04± 0.04 0.03± 0.03 0.05± 0.04
FS-POMCP-MP-WPF 0.01± 0.02 0.03± 0.03 0.03± 0.03 0.06± 0.05
FS-POMCP-VE 0.01± 0.02 0.02± 0.03 0.02± 0.03 0.06± 0.05
FS-POMCP-VE-WPF 0.01± 0.02 0.02± 0.03 0.02± 0.03 0.02± 0.03
FT-PFT-MP-WPF 0.00± 0.00 0.02± 0.03 0.04± 0.04 0.02± 0.03
FT-PFT-VE-WPF 0.00± 0.00 0.00± 0.00 0.04± 0.04 0.02± 0.03
FT-POMCP-MP 0.18± 0.08 0.69± 0.09 0.18± 0.08 0.78± 0.08
FT-POMCP-MP-WPF 0.06± 0.05 0.32± 0.09 0.05± 0.04 0.44± 0.10
FT-POMCP-VE 0.26± 0.09 0.36± 0.09 0.33± 0.09 0.51± 0.10
FT-POMCP-VE-WPF 0.15± 0.07 0.41± 0.10 0.20± 0.08 0.55± 0.10
PFT-WPF 0.00± 0.00 0.01± 0.02 0.02± 0.03 0.02± 0.03

Table 10.1: CaptureTarget(12 × 12). Maximum time per step of fifteen seconds. For
completeness, we report full results from Table 7.4.

85

10.1.3 MARS
Small computational budget

Larger computational budget

86

(a) Small map: MARS(m = 7, k = 8), γ = 0.95, c = 1.25

Environment MARS(7, 8)
Nr. of Agents 3 4 5 6
FS-PFT-MP −8.7± 2.4 −3.5± 2.5 −10.3± 4.6 −11.9± 4.8
FS-PFT-VE 3.9± 1.5 −3.9± 1.6 −6.9± 1.7 −9.4± 2.0
FS-POMCP-MP −0.5± 2.1 −3.5± 2.4 −2.3± 3.4 −2.3± 2.1
FS-POMCP-MP-WPF 0.3± 1.2 0.9± 1.8 −1.2± 2.6 −1.8± 2.8
FS-POMCP-VE 0.7± 2.0 2.8± 3.0 2.8± 2.8 −0.8± 3.8
FS-POMCP-VE-WPF −1.0± 1.1 0.8± 1.3 2.7± 1.2 2.1± 1.4
FS-POMCPOW-MP −0.2± 1.2 0.5± 1.0 0.7± 2.3 0.0± 2.7
FS-POMCPOW-VE 1.2± 1.1 4.5± 1.6 1.7± 1.3 8.9± 0.8
FT-PFT-MP −3.6± 2.1 −6.5± 3.1 −9.7± 1.9 −9.1± 4.5
FT-PFT-VE 0.4± 1.6 0.2± 1.4 1.0± 1.6 −11.5± 2.5
FT-POMCP-MP 2.5± 1.8 0.4± 1.1 1.8± 1.9 −0.4± 3.6
FT-POMCP-MP-WPF 1.7± 1.1 1.7± 0.7 −0.1± 2.1 1.0± 0.8
FT-POMCP-VE 5.8± 1.1 3.0± 1.3 2.7± 1.2 1.1± 1.2
FT-POMCP-VE-WPF 1.8± 1.1 2.9± 1.1 −1.3± 1.3 3.4± 1.5
DESPOT OOR OOR OOR OOR
PFT −6.0± 2.5 −9.1± 2.8 −0.0± 0.7 OOR
POMCP 12.8± 2.8 7.5± 3.7 −4.6± 2.3 OOR
POMCP-WPF 24.6± 2.0 6.4± 1.9 −1.9± 1.5 OOR
POMCPOW 14.7± 1.9 11.1± 1.8 −0.2± 0.6 OOR

(b) Medium map: MARS(11, 11), γ = 0.95, c = 1.25

Environment MARS(11, 11)
Nr. of Agents 3 4 5 6
FS-PFT-MP −3.6± 1.2 −5.7± 1.5 −1.0± 3.1 −11.7± 5.9
FS-PFT-VE −1.6± 1.3 −2.7± 1.9 −4.6± 2.7 −1.3± 1.6
FS-POMCP-MP −0.5± 1.5 −4.1± 3.0 −5.1± 3.4 −10.7± 4.5
FS-POMCP-MP-WPF 0.4± 0.8 −0.2± 0.4 −1.7± 0.7 −0.3± 0.3
FS-POMCP-VE 1.8± 2.9 −1.0± 3.0 −7.3± 4.4 −6.8± 2.7
FS-POMCP-VE-WPF −1.1± 0.6 1.5± 1.2 −3.7± 1.2 3.9± 1.0
FS-POMCPOW-MP −0.3± 0.7 0.1± 0.3 0.3± 0.9 −1.5± 1.3
FS-POMCPOW-VE 2.2± 0.9 2.1± 1.0 −2.4± 1.2 −2.1± 1.2
FT-PFT-MP 1.0± 1.8 −4.8± 1.2 −4.7± 3.0 −7.4± 5.0
FT-PFT-VE −5.3± 1.6 −8.9± 1.6 −1.9± 0.9 −0.8± 1.5
FT-POMCP-MP 0.0± 0.9 −0.0± 1.4 −0.0± 0.7 −1.2± 1.2
FT-POMCP-MP-WPF 0.5± 0.4 0.1± 0.2 0.0± 0.2 −0.1± 0.2
FT-POMCP-VE 1.5± 1.0 1.7± 1.3 4.3± 1.1 4.3± 0.9
FT-POMCP-VE-WPF 5.2± 0.9 −3.3± 0.8 −3.6± 0.9 6.8± 1.0
DESPOT OOR OOR OOR OOR
PFT −17.7± 2.2 1.7± 1.6 −0.1± 0.5 OOR
POMCP 17.0± 1.9 −3.6± 2.9 −0.1± 0.2 OOR
POMCP-WPF 15.5± 1.9 8.5± 1.3 0.0± 0.0 OOR
POMCPOW 2.4± 1.0 −0.8± 1.3 −0.0± 0.5 OOR

Table 10.2: MARS experiments with three maps and various numbers of agents. Maxi-
mum time per step is five seconds.

87

(c) Large map: MARS(15, 15), γ = 0.95, c = 1.25

Environment MARS(15, 15)
Nr. of Agents 3 4 5 6
FS-PFT-MP −5.8± 1.4 −1.4± 0.7 −3.9± 1.1 −2.1± 2.1
FS-PFT-VE −7.1± 1.6 −3.3± 1.0 −0.6± 0.5 −7.6± 1.9
FS-POMCP-MP 0.9± 1.9 −1.7± 1.6 −3.1± 1.3 −7.8± 3.5
FS-POMCP-MP-WPF 0.2± 0.4 0.0± 0.0 0.4± 0.5 −0.2± 0.3
FS-POMCP-VE −3.9± 1.3 0.8± 1.9 −2.5± 3.2 −4.4± 2.3
FS-POMCP-VE-WPF −0.6± 0.6 3.0± 0.8 2.2± 1.1 −3.9± 0.8
FS-POMCPOW-MP −0.9± 0.4 −1.0± 1.6 −4.3± 1.2 0.3± 0.3
FS-POMCPOW-VE 1.9± 0.5 2.1± 1.3 −3.2± 1.1 −2.6± 1.8
FT-PFT-MP −1.8± 0.7 −2.1± 1.7 −3.6± 1.0 −2.7± 1.7
FT-PFT-VE −2.5± 1.1 2.0± 1.1 −0.6± 0.6 −10.3± 1.6
FT-POMCP-MP 0.3± 0.9 −0.9± 1.2 1.0± 1.2 −0.9± 0.6
FT-POMCP-MP-WPF 0.8± 0.6 0.0± 0.0 0.6± 0.4 −0.9± 1.7
FT-POMCP-VE 2.3± 0.8 0.6± 0.8 1.1± 0.9 3.6± 0.8
FT-POMCP-VE-WPF −0.6± 0.3 1.1± 1.0 5.6± 1.1 −1.7± 0.6
DESPOT OOR OOR OOR OOR
PFT −2.5± 1.4 0.5± 0.7 −0.1± 0.1 OOR
POMCP 9.1± 1.5 −0.6± 1.6 0.0± 0.0 OOR
POMCP-WPF −14.9± 1.6 −0.0± 0.5 0.0± 0.0 OOR
POMCPOW 4.3± 1.3 −1.3± 1.2 −0.4± 0.5 OOR

Table 10.2: MARS experiments with three maps and various numbers of agents. Maxi-
mum time per step is five seconds.

88

(a) Small map: MARS(m = 7, k = 8), γ = 0.95, c = 1.25

Environment MARS(7, 8)
Nr. of Agents 3 4 5 6
FS-PFT-MP −17.1± 2.5 −8.8± 2.9 −9.1± 2.3 −8.5± 4.6
FS-PFT-VE 4.1± 1.7 2.0± 2.0 −3.4± 1.7 −6.4± 0.0
FS-POMCP-MP 0.9± 3.0 1.3± 2.8 −5.3± 4.3 −7.1± 3.3
FS-POMCP-MP-WPF −1.1± 1.1 1.6± 1.0 −2.9± 1.5 −2.3± 2.1
FS-POMCP-VE 9.9± 2.1 7.9± 2.6 −1.1± 2.5 0.0± 2.8
FS-POMCP-VE-WPF 3.4± 1.1 4.9± 1.3 0.3± 1.4 6.6± 1.5
FS-POMCPOW-MP −0.9± 0.8 3.6± 1.0 3.0± 2.8 3.2± 1.3
FS-POMCPOW-VE 1.0± 1.3 −2.3± 1.6 −1.5± 0.6 6.2± 0.5
FT-PFT-MP −6.2± 1.9 −7.2± 3.1 −6.4± 3.4 −4.7± 3.2
FT-PFT-VE −9.4± 1.8 −6.3± 1.0 −14.2± 2.3 −2.8± 2.1
FT-POMCP-MP 2.4± 1.4 1.4± 1.7 4.7± 1.8 −1.3± 3.4
FT-POMCP-MP-WPF 1.9± 1.1 2.2± 0.8 1.9± 1.0 1.1± 1.2
FT-POMCP-VE 5.1± 1.0 4.6± 1.4 7.0± 2.5 2.9± 1.1
FT-POMCP-VE-WPF 2.9± 1.2 4.3± 1.2 0.6± 1.6 2.4± 1.3
DESPOT OOR 20.8† ± 0.3 OOR OOR
PFT 2.1± 1.9 −10.6± 2.3 −2.3± 1.9 −0.7± 0.8
POMCP 20.0± 2.1 18.3± 4.3 −0.8± 2.1 0.0± 0.0
POMCP-WPF 11.1± 2.4 26.6± 2.4 8.5± 1.5 0.0± 0.0
POMCPOW 32.6± 2.1 12.3± 1.8 −4.9± 1.6 OOR

(b) Medium map: MARS(11, 11), γ = 0.95, c = 1.25

Environment MARS(11, 11)
Nr. of Agents 3 4 5 6
FS-PFT-MP 4.3± 1.3 −4.1± 1.3 −4.6± 1.7 −2.6± 4.1
FS-PFT-VE 15.9± 1.4 −5.9± 1.3 −2.0± 1.9 7.2± 1.3
FS-POMCP-MP −2.5± 1.1 −1.6± 1.5 −5.1± 4.2 −4.8± 2.6
FS-POMCP-MP-WPF −1.4± 0.7 0.2± 0.4 2.1± 1.2 0.9± 1.7
FS-POMCP-VE 5.7± 2.1 1.5± 2.0 −6.4± 2.7 −2.8± 5.5
FS-POMCP-VE-WPF 3.4± 1.0 1.0± 0.8 −0.7± 1.1 −1.4± 1.3
FS-POMCPOW-MP 2.0± 1.0 −1.6± 0.7 −2.3± 1.0 −1.6± 2.4
FS-POMCPOW-VE −2.1± 0.8 1.8± 1.2 2.9± 1.5 −5.0± 1.5
FT-PFT-MP 1.9± 0.8 0.1± 1.4 −4.5± 2.3 −5.6± 2.5
FT-PFT-VE 3.1± 1.0 −7.8± 1.1 −9.5± 1.4 −5.4± 1.4
FT-POMCP-MP −2.7± 1.5 −1.4± 1.4 −0.5± 0.6 −0.5± 1.9
FT-POMCP-MP-WPF −1.1± 1.7 0.0± 0.0 1.1± 0.6 −0.7± 1.7
FT-POMCP-VE 4.0± 1.1 5.5± 1.4 3.4± 1.8 1.5± 0.9
FT-POMCP-VE-WPF 5.9± 1.0 −2.3± 1.0 3.1± 1.1 −2.1± 0.9
DESPOT 25.1± 0.7 OOR OOR OOR
PFT −9.1± 2.0 −6.8± 2.5 −0.2± 0.4 OOR
POMCP 18.0± 2.4 −6.4± 1.9 −6.4± 4.2 OOR
POMCP-WPF 6.9± 1.0 −9.3± 2.1 −4.5± 1.3 OOR
POMCPOW 14.2± 1.1 −4.1± 1.6 −1.1± 0.6 OOR

Table 10.3: MARS experiments with three maps and various numbers of agents. Maxi-
mum time per step is five seconds.

89

(c) Large map: MARS(15, 15), γ = 0.95, c = 1.25

Environment MARS(15, 15)
Nr. of Agents 3 4 5 6
FS-PFT-MP 2.3± 0.8 −2.4± 2.8 −3.0± 1.8 −2.6± 3.7
FS-PFT-VE-WPF −5.8± 1.3 −5.2± 1.2 4.2± 0.9 2.6± 0.6
FS-POMCP-MP −1.2± 0.5 −1.4± 2.3 −1.5± 1.6 −2.9± 2.3
FS-POMCP-MP-WPF −1.3± 0.5 −0.1± 0.7 −0.2± 0.2 −0.0± 0.1
FS-POMCP-VE 3.4± 2.2 −3.2± 2.5 −2.1± 2.1 −3.8± 2.3
FS-POMCP-VE-WPF −2.9± 0.8 0.5± 0.5 0.1± 0.8 6.9± 1.1
FS-POMCPOW-MP-WPF 1.3± 2.2 −0.5± 1.6 −0.3± 2.0 −1.7± 1.8
FS-POMCPOW-VE-WPF −2.9± 0.9 4.9± 0.8 3.3± 1.1 0.4± 1.4
FT-PFT-MP-WPF −6.5± 1.3 −0.4± 0.6 −0.1± 0.7 −2.1± 0.8
FT-PFT-VE-WPF −3.8± 0.9 −3.6± 1.0 1.9± 0.6 3.0± 0.9
FT-POMCP-MP −1.0± 0.6 −0.3± 0.4 0.1± 0.1 −0.6± 1.1
FT-POMCP-MP-WPF −0.1± 0.6 0.1± 0.2 0.2± 0.2 0.4± 0.3
FT-POMCP-VE −1.3± 0.6 0.4± 0.6 −0.9± 0.6 3.4± 0.8
FT-POMCP-VE-WPF 1.7± 0.6 3.6± 0.7 −0.2± 0.4 −1.5± 0.6
DESPOT N.A. N.A. N.A. N.A.
PFT-WPF −1.7± 1.2 0.2± 0.7 −0.2± 0.2 OOR
POMCP 4.1± 2.0 0.1± 1.9 0.0± 0.0 OOR
POMCP-WPF 8.4± 1.3 −1.5± 1.1 0.0± 0.0 OOR
POMCPOW-WPF −13.5± 1.5 0.2± 1.1 −0.1± 0.5 OOR

Table 10.3: MARS experiments with three maps and various numbers of agents. Maxi-
mum time per step is five seconds.

90

	Introduction
	Preliminaries
	Decision Making Under Uncertainty
	Single-Agent Sequential Decision Making
	Partial Observability

	Multi-Agent Systems
	Cooperation
	Centralised Agents
	Decentralised Agents
	Complexity Classes

	Simulators & Tree Search
	Monte Carlo Tree Search
	Bandit Algorithms in Monte Carlo Planning
	Partial Observability

	Particle filters
	Unweighted
	Weighted
	Sequential Monte Carlo
	Particle Filtering

	Tree Search for Many-Agent POMDPs
	Coordination Graphs
	Factored-Value POMCP
	Factored Statistics
	Factored Trees

	Particle Belief-Space Planning for MPOMDPs
	Particle-Belief MMDP
	Coordination Graph Particle Filter Tree

	Scalable Particle Filtering
	Factored Particle Filtering
	Factored Filtering
	Drawbacks

	Locality-based filtering
	Multiple Estimators
	Limitations

	Action Selection
	Algorithms
	Exact Algorithm
	Anytime Algorithm
	Eliminating Cycles

	Comparison
	Computational Complexity
	Exploration

	Experimental Evaluation
	Benchmark descriptions
	Firefighting in a Line
	System Administration
	Rocksampling
	Capturing a Target

	Set-up
	Results
	Overview
	Analysis
	Additional experiments

	Contributions, Related Work & Discussion
	Related Work
	Discussion

	Future Work & Conclusion
	Future Work
	Conclusion

	Experimental Evaluation
	Full Results
	Firefighting
	CaptureTarget
	MARS

